تولید نقشهی ظرفیت گرمایی نسبی سطح از طریق سری زمانی روزانه و شبانه تصاویر سنجندهی مادیس و مدلهای ارتفاعی زمین (منطقه مورد مطالعه: مناطق بیابانی استان سمنان)
محورهای موضوعی : توسعه سیستم های مکانی
محمد آزاد
1
*
,
مهدی مختارزاده
2
,
علیرضا صفدری نژاد
3
,
علیرضا صیامی
4
1 - دانشجوی کارشناسی ارشد فتوگرامتری، دانشکده مهندسی نقشهبرداری، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران
2 - دانشیار گروه فتوگرامتری و سنجش از دور، دانشکده مهندسی نقشهبرداری، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران
3 - استادیار گروه ژئودزی و مهندسی نقشهبرداری، دانشگاه تفرش، تفرش، ایران
4 - کارشناسی ارشد مدیریت منابع خاک، دانشکده کشاورزی و منابع طبیعی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران
کلید واژه: دمای سطح, سنجندهی مادیس, مدل رقومی ارتفاعی, واژههای کلیدی: ظرفیت گرمایی,
چکیده مقاله :
ظرفیت گرمایی کمیتی فیزیکی از سطح بوده که با میزان انرژی گرمایی لازم بمنظور تغییر دمای آن ارتباط مستقیم دارد. مناطق وسیع با ظرفیت گرمایی بالا بروز شرایط اقلیمی معتدل و وجود سطوح با ظرفیت گرمایی پایین یکی از عوامل بروز شرایط اقلیمی کویری محسوب میشوند. اختلاف دمایی ایجاد شده در سطح به ازای جذب انرژی گرمایی یکنواخت ارتباط معکوسی با ظرفیت گرمایی دارد. اما خورشید بعنوان مهمترین عامل نشر انرژی گرمایی در طول روز تابش یکنواختی را به سطح زمین ندارد. در این مقاله با تنظیم اثر سایه، تمایز در میزان انرژی الکترومغناطیس رسیده به بخشهای مختلف از سطح زمین در منطقه مورد مطالعه مدلسازی شده و در ادامه با محاسبهی اختلاف دمای سطح در طول روز راهکاری بمنظور تولید نقشهی ظرفیت گرمایی نسبی پیشنهاد شده است. در این روش از سری زمانی دمای سطح برای روز و شب با هدف تعدیل اثر عوامل مخرب جوی در بازیابی دما استفاده شده و با تحلیلهای مکانی در مدل رقومی ارتفاعی نقشه درصد رخداد سایه در طول روز تولید شده است. کالیبراسیون روش پیشنهادی به کمک واقعیتهای زمینی شناسایی شده توسط عامل متخصص به اجرا رسیده و نتایج حاکی از دقت 93 درصدی در ردهبندی نسبی سطح از منظر ظرفیت گرمایی بوده است.
Heat capacity is a physical quantity of the surface that is directly related to the amount of heat energy required to change the surface temperature. Land surfaces with a high of thermal capacity are a sign of moderate climatic conditions and the presence of the low ones is known as a reason for the occurrence of desert climate conditions. When uniform heat energy absorption is occurred by different surfaces, their temperature changes can be inversely related to the heat capacity. However, due to obstacles and shadows, the sunlight as the most important factor in the reception of heat energy during the day does not receive uniformly to the surface of the earth. In this article, by adjusting the shadows effect the differences in sunlight energy received by different parts of land surfaces are modeled. Then, by calculating the day and night land surface temperatures a method has been proposed for estimation of relative heat capacity. In this method, the time series of MODIS images are used to reduce the destructive effects of atmospheric conditions in the estimation of land surface temperature. The percentage of shadow’s presence in each position is also estimated through the spatial analyses on digital elevation models. The proposed method has been calibrated through the ground truths identified with expert knowledge about the soil properties. The results demonstrate that the efficiency of the calibrated method reaches the overall accuracy of 93% in a relative assortment of land surfaces in terms of their heat capacities.
Ahmadi S, Alizadeh H, Mojaradi B. 2022. Land surface temperature assimilation into a soil moisture-temperature model for retrieving farm-scale root zone soil moisture. Geoderma, 421:115923. doi:https://doi.org/10.1016/j.geoderma.2022.115923.
Aman A, Randriamanantena HP, Podaire A, Frouin R. 1992. Upscale integration of normalized difference vegetation index: The problem of spatial heterogeneity. IEEE Transactions on Geoscience and Remote Sensing, 30(2):326-38. doi:https://doi.org/10.1109/36.134082.
Ariza-López FJ, Rodriguez-Avi J, Alba-Fernandez MV. 2018. Complete control of an observed confusion matrix. InIGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, (pp. 1222-1225). IEEE. doi:https://doi.org/10.1109/IGARSS.2018.8517540.
Cess RD, Goldenberg SD. 1981. The effect of ocean heat capacity upon global warming due to increasing atmospheric carbon dioxide. Journal of Geophysical Research: Oceans, 86(C1):498-502. doi:https://doi.org/10.1029/JC086iC01p00498.
Fonseca R, Zorzano‐Mier MP, Azua‐Bustos A, González‐Silva C, Martín‐Torres J. 2019. A surface temperature and moisture intercomparison study of the Weather Research and Forecasting model, in‐situ measurements and satellite observations over the Atacama Desert. Quarterly Journal of the Royal Meteorological Society, 145(722):2202-20. doi:https://doi.org/10.1002/qj.3553.
Gaffar EZ. 2013. Remote sensing application on geothermal exploration. InAIP Conference Proceedings, (Vol. 1554, No. 1, pp. 261-264). American Institute of Physics. doi:https://doi.org/10.1063/1.4820335.
Gholami Bidkhani N, Mobasheri MR. 2019. Development of an Index-based Regression Model for Soil Moisture Estimation Using MODIS Imageries by Considering Soil Texture Effects. Journal of Geomatics Science and Technology, 9(1):173-87. doi: http://jgst.issge.ir/article-1-837-en.html . (In Persian)
Halliday D, Resnick R, Walker J. 2013. Fundamentals of physics. John Wiley & Sons.
He R, Jin Y, Jiang J, Xu M, Jia S. 2022. Sensitivity of METRIC-based tree crop evapotranspiration estimation to meteorology, land surface parameters and domain size. Agricultural Water Management, 271:107789. doi:https://doi.org/10.1016/j.agwat.2022.107789.
Hedayati A, Vahidnia M, Agha Mohammadi H. 2021. Detection of paddy fields in Rasht city using multi-temporal images of Landsat 8. Remote sensing and GIS of Iran. doi:https://dx.doi.org/10.52547/gisj.2021.215319.0. (In Persian)
Jafari R, Malekian M. 2015. Comparison and evaluation of dust detection algorithms using MODIS Aqua/Terra Level 1B data and MODIS/OMI dust products in the Middle East. International Journal of Remote Sensing, 36(2):597-617. doi:https://doi.org/10.1080/01431161.2014.999880.
Jenson JR. 2007. Remote Sensing of the Environment-An Earth Resource Perspective’, NY: Prentice Hall Series in Geographic Information Science, Second Edition.
Kaffash M, Sanaei-Nejad SH. 2020. Fusion of MODIS and Landsat-8 Land Surface Temperature Images Using Spatio-Temporal Image Fusion Model. Iranian Journal of Soil and Water Research, 51(3):763-73. doi:https://dx.doi.org/10.22059/ijswr.2019.291016.668360. (In Persian)
Kloos S, Yuan Y, Castelli M, Menzel A. 2021. Agricultural drought detection with MODIS based vegetation health indices in southeast Germany. Remote Sensing, 13(19):3907. doi:https://doi.org/10.3390/rs13193907.
Liang S, Strahler AH, Walthall C. 1999. Retrieval of land surface albedo from satellite observations: A simulation study. Journal of Applied meteorology, 38(6):712-25. doi:https://doi.org/10.1175/1520-0450(1999)038%3C0712:ROLSAF%3E2.0.CO;2.
Liao Y, Shen X, Zhou J, Ma J, Zhang X, Tang W, Chen Y, Ding L, Wang Z. 2022. Surface urban heat island detected by all-weather satellite land surface temperature. Science of The Total Environment, 811:151405 doi:https://doi.org/10.1016/j.scitotenv.2021.151405.
Liu J, Fang T, Li D. 2011. Shadow detection in remotely sensed images based on self-adaptive feature selection. IEEE Transactions on Geoscience and Remote Sensing, 49(12):5092-103. doi:https://doi.org/10.1109/TGRS.2011.2158221
Lohmann G. 2020. Temperatures from energy balance models: the effective heat capacity matters. Earth System Dynamics, 11(4):1195-208. doi:https://doi.org/10.5194/esd-11-1195-2020.
Mahmood SA, Rousta I, Mazidi A. 2022. Investigating the Sustainability of Vegetation Change Trends Using Remote Sensing (Case Study: Northern River Basin of Afghanistan). Geography and Environmental Sustainability, 12(2):17-35. doi:https://dx.doi.org/10.22126/ges.2022.7416.2496. (In Persian)
Martynov I, Kauranne T. 2014. Detection of Shadow Artifacts in Satellite Imagery Using Digital Elevation Models. InEuropean Consortium for Mathematics in Industry, (pp. 1057-1063). Springer, Cham. doi:https://doi.org/10.1007/978-3-319-23413-7_147.
Masroor M, Sajjad H, Rehman S, Singh R, Rahaman MH, Sahana M, Ahmed R, Avtar R. 2022. Analysing the relationship between drought and soil erosion using vegetation health index and RUSLE models in Godavari middle sub-basin, India. Geoscience Frontiers, 13(2):101312. doi:https://doi.org/10.1016/j.gsf.2021.101312.
Platnick S, King MD, Ackerman SA, Menzel WP, Baum BA, Riédi JC, Frey RA. 2003. The MODIS cloud products: Algorithms and examples from Terra. IEEE Transactions on geoscience and Remote Sensing, 41(2):459-73. doi:https://doi.org/10.1109/TGRS.2002.808301.
Recondo C, Corbea-Pérez A, Peón J, Pendás E, Ramos M, Calleja JF, de Pablo MÁ, Fernández S, Corrales JA. 2022. Empirical Models for Estimating Air Temperature Using MODIS Land Surface Temperature (and Spatiotemporal Variables) in the Hurd Peninsula of Livingston Island, Antarctica, between 2000 and 2016. Remote Sensing, 14(13):3206. doi:https://doi.org/10.3390/rs14133206.
Safdarinezhad A, Mokhtarzade M, Valadan Zoej MJ. 2016. Shadow-based hierarchical matching for the automatic registration of airborne LiDAR data and space imagery. Remote Sensing, 8(6):466. doi:https://doi.org/10.3390/rs8060466.
Savtchenko A, Ouzounov D, Ahmad S, Acker J, Leptoukh G, Koziana J, Nickless D. 2004. Terra and Aqua MODIS products available from NASA GES DAAC. Advances in Space Research, 34(4):710-4. doi:https://doi.org/10.1016/j.asr.2004.03.012.
Tang BH, Shao K, Li ZL, Wu H, Tang R. 2015. An improved NDVI-based threshold method for estimating land surface emissivity using MODIS satellite data. International Journal of Remote Sensing, 36(19-20):4864-78. doi:https://doi.org/10.1080/01431161.2015.1040132.
Taylor SA, Jackson RD. 1986. Heat capacity and specific heat. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5:941-4. doi:https://doi.org/10.2136/sssabookser5.1.2ed.c38.
Tsegaye NT, Melka GA. 2022. Land Surface Temperature Detection in Relation to Land Use Land Cover Change: The Case of Jimma City and It’s Surroundings, Jimma Zone, Southwest, Ethiopia. doi:https://doi.org/10.21203/rs.3.rs-1388653/v1.
United States. Dept. of Agriculture. Soil Survey Division, United States. Division of Soil Survey. 1993. Soil survey manual. US Department of Agriculture; Book:https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd1335011.pdf.
Wang L, Neumann U. 2009. A robust approach for automatic registration of aerial images with untextured aerial lidar data. In2009 IEEE Conference on Computer Vision and Pattern Recognition, (pp. 2623-2630). IEEE. doi:https://doi.org/10.1109/CVPR.2009.5206600.