تحلیل مکانی گردوغبار استان خوزستان به کمک تصاویر ماهواره ای
محورهای موضوعی :
توسعه سیستم های مکانی
محمد دانیالی
1
,
بایرامعلی محمدنژاد
2
,
نعمت الله کریمی
3
1 - دانشجوی کارشناسی ارشد عمران محیطزیست، دانشگاه صنعتی قم
2 - استادیار دانشکده عمران، دانشگاه صنعتی قم
3 - دانشیار مؤسسه تحقیقات آب، وزارت نیرو، تهران
تاریخ دریافت : 1396/10/24
تاریخ پذیرش : 1397/02/27
تاریخ انتشار : 1397/03/01
کلید واژه:
سنجنده مودیس,
خوزستان,
سنجش از دور,
گردوغبار,
عمق اپتیکی آئروسل,
چکیده مقاله :
در سال های اخیر، طوفان های گردوغبار یکی از مهمترین چالش های آلودگی هوای استان خوزستان بوده است. با توجه به پژوهش های مختلفی که تاکنون انجام پذیرفته است، کشورهای عراق و سوریه بهعنوان منشأ اصلی گردوغبارهای رسیده به خوزستان گزارش می گردد که بیانگر لزوم مطالعه پایش مکانی گردوغبارهای این منطقه می باشد. در این تحقیق، با استفاده از شاخص عمق اپتیکی اخذشده از تصاویر سنجنده MODIS، روند تغییرات سالانه گردوغبار استان خوزستان از ماه مارس سال 2000 تا پایان 2016 تعیین گردید. تغییرات اصلی شاخص گردوغباری خوزستان در سال های 2005، 2009 و 2015، بهعنوان شاخص بررسی روند تغییرات مکانی گردوغبار منطقه غرب ایران انتخاب گردید. نتایج نشان داد که شاخص های گردوغباری منطقه غرب ایران در سال 2005 شباهت زیادی با سال 2015 داشته است. بااینوجود در سال 2015 از فعالیت کانون های گردوغباری بخش هایی از شرق و شمال کشور عراق (شمال دریاچه تارتار) کاسته شده و بر فعالیت کانون هایی واقع در داخل و جنوب کشور کویت و شمال شرقی عربستان افزودهشده است. همچنین فعالیت کانون های گردوغباری مناطقی در شمال غربی عراق و شرق سوریه در سال 2009 بهطور موقت افزایش داشته است که منجر به بالا رفتن شاخص های گردوغباری استان خوزستان طی آن سال گردید. در کنار تغییرات فعالیت کانون های خارجی، افزایش فعالیت کانونی در جنوب شرق اهواز هم در سال 2015 در مقایسه با سال های 2005 و 2009 افزایش داشته که با توجه به مجاورت با شهر اهواز می تواند نقش قابلتوجهی در بحران های گردوغباری سال های اخیر استان خوزستان داشته باشد.
چکیده انگلیسی:
In recent years, dust storms have been one of the most important air pollution crises in Khuzestan province. According to various studies, the countries of Iraq and Syria is reported as the main sources of dust over Khuzestan, it is necessary to monitor the spatial patterns of dust sources in the western region of Iran in different years. In this study, using Aerosol Optical Depth (AOD) from the MODIS, annual trend of dust in Khuzestan province was determined from March 2000 through the end of 2016. Three years 2005, 2009, and 2015 as representative of the main changes in the Khuzestan dust index, the spatial variation of dust in the neighbouring western region of Iran were investigated. According to the results, the dust indexes of the western region of Iran in 2005 were similar to 2015. Nevertheless, in 2015, the activities of dust source points in the eastern and northern part of Iraq (north of the Tharthar Lake) were reduced, and the activity of dust source points in the south of Kuwait and northeastern Arabia increased. The activity of dust source points in areas in the northwest of Iraq and eastern Syria in 2009 has temporarily increased significantly, which has led to an increase in dust index of Khuzestan province that year. Along with these changes, the increase of dust activity in southeast Ahwaz in 2015 compared with the years 2005 and 2009, due to the proximity to the city of Ahwaz, could play a significant role in the dust waves of the recent years.
منابع و مأخذ:
آرونف، ا. 1391. سنجش از دور برای مدیران GIS. ترجمه: علی اصغر درویش صفت، مهتاب پیرباوقار. انتشارات دانشگاه تهران. 710 صفحه.
بیات، ر.، س. جعفری، ب. قرمزچشمه و ا. ح. چرخابی. 1395. مطالعه تأثیر ریزگردها بر تغییرات پوشش گیاهی (مطالعة موردی: تالاب شادگان، خوزستان). سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 7(2): 17-32.
فلاح ززولی، م.، ع. وفایی نژاد، م. خیرخواه زرکش و ف. احمدی دهکاء. 1393. منشاء یابی گرد و غبار غرب و جنوب غرب ایران و تحلیل سینوپتیکی آن با استفاده از سنجش از دور و سیستم اطلاعات جغرافیایی. سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 5(4): 61-78.
کاظمی نیا، ع.، ک. رنگزن و م. محمودآبادی. 1396. بررسی شدت بیابانزایی با استفاده از مدل مدالوس (مطالعۀ موردی: اراضی غرب اهواز). سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 8(2): 111-126.
Alam K, Qureshi S, Blaschke T. 2011. Monitoring spatio-temporal aerosol patterns over Pakistan based on MODIS, TOMS and MISR satellite data and a HYSPLIT model. Atmospheric Environment, 45(27): 4641-4651.
Bilal M, Nichol JE, Nazeer M. 2016. Validation of Aqua-MODIS C051 and C006 operational aerosol products using AERONET measurements over Pakistan. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(5): 2074-2080.
Chudnovsky AA, Koutrakis P, Kloog I, Melly S, Nordio F, Lyapustin A, Wang Y, Schwartz J. 2014. Fine particulate matter predictions using high resolution Aerosol Optical Depth (AOD) retrievals. Atmospheric Environment, 89: 189-198.
Chudnovsky AA, Koutrakis P, Kostinski A, Proctor SP, Garshick E. 2017. Spatial and temporal variability in desert dust and anthropogenic pollution in Iraq, 1997–2010. Journal of the Air & Waste Management Association, 67(1): 17-26.
El-Metwally M, Alfaro S, Wahab MA, Zakey A, Chatenet B. 2010. Seasonal and inter-annual variability of the aerosol content in Cairo (Egypt) as deduced from the comparison of MODIS aerosol retrievals with direct AERONET measurements. Atmospheric Research, 97(1-2): 14-25.
Faramarzi M, Heidarizadi Z, Mohamadi A, Heydari M. 2018. Detection of Vegetation Changes in Relation to Normalized Difference Vegetation Index (NDVI) in Semi-Arid Rangeland in Western Iran. Journal of Agricultural Science and Technology, 20(1): 51-60.
Ginoux P, Prospero JM, Gill TE, Hsu NC, Zhao M. 2012. Global‐scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Reviews of Geophysics, 50(3): 1–36.
Ichoku C, Remer LA, Kaufman YJ, Levy R, Chu DA, Tanré D, Holben BN. 2003. MODIS observation of aerosols and estimation of aerosol radiative forcing over southern Africa during SAFARI 2000. Journal of Geophysical Research: Atmospheres, 108(D13): 1-35.
Karimi N, Moridnejad A, Golian S, Vali Samani JM, Karimi D, Javadi S. 2012. Comparison of dust source identification techniques over land in the Middle East region using MODIS data. Canadian Journal of Remote Sensing, 38(5): 586-599.
Lin C, Li Y, Lau AK, Deng X, Tim K, Fung JC, Li C, Li Z, Lu X, Zhang X. 2016. Estimation of long-term population exposure to PM 2.5 for dense urban areas using 1-km MODIS data. Remote Sensing of Environment, 179: 13-22.
Loría-Salazar SM, Holmes HA, Arnott WP, Barnard JC, Moosmüller H. 2016. Evaluation of MODIS columnar aerosol retrievals using AERONET in semi-arid Nevada and California, USA, during the summer of 2012. Atmospheric Environment, 144: 345-360.
Luo SP, Hu JR, Zhang YZ. 2015. Analysis of Rocky Desertification in Central Guizhou, China, Using Landsat Satellite Data. Proceedings of the International Conference on Computer Information Systems and Industrial Applications (Cisia 2015), 18(Cisia): 165-168.
Mancino G, Nolè A, Ripullone F, Ferrara A. 2014. Landsat TM imagery and NDVI differencing to detect vegetation change: assessing natural forest expansion in Basilicata, southern Italy. iForest-Biogeosciences and Forestry, 7(2): 75-84.
Mehta M, Singh R, Singh A, Singh N. 2016. Recent global aerosol optical depth variations and trends-A comparative study using MODIS and MISR level 3 datasets. Remote Sensing of Environment, 181: 137-150
Moridnejad A, Karimi N, Ariya PA. 2015. A new inventory for middle east dust source points. Environmental Monitoring and Assessment, 187(9): 582-592.
Moridnejad A, Karimi N, Ariya PA. 2015. Newly desertified regions in Iraq and its surrounding areas: Significant novel sources of global dust particles. Journal of Arid Environments, 116: 1-10.
Namdari S, Valizade K, Rasuly A, Sarraf BS. 2016. Spatio-temporal analysis of MODIS AOD over western part of Iran. Arabian Journal of Geosciences, 9(3): 191-199.
Qi Y, Ge J, Huang J. 2013. Spatial and temporal distribution of MODIS and MISR aerosol optical depth over northern China and comparison with AERONET. Chinese Science Bulletin, 58(20): 2497-2506.
Rashki A, Kaskaoutis DG, Eriksson P, Qiang M, Gupta P. 2012. Dust storms and their horizontal dust loading in the Sistan region, Iran. Aeolian Research, 5: 51-62.
Rolph G, Stein A, Stunder B. 2017. Real-time environmental applications and display system: Ready. Environmental Modelling & Software, 95: 210-228.
Sayer A, Hsu N, Bettenhausen C, Jeong MJ. 2013. Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data. Journal of Geophysical Research: Atmospheres, 118(14): 7864-7872.
Shao Y, Wyrwoll K-H, Chappell A, Huang J, Lin Z, McTainsh GH, Mikami M, Tanaka TY, Wang X, Yoon S. 2011. Dust cycle: An emerging core theme in Earth system science. Aeolian Research, 2(4): 181-204.
Sharif F, Khan A, Sheeba A. 2015. Spatio-Temporal distribution of Aerosol and Cloud properties over Sindh using MODIS satellite data and a HYSPLIT Model. Aerosol and Air Quality Research, 15(2): 657-672.
Shi Y, Zhang J, Reid J, Hyer E, Hsu N. 2013. Critical evaluation of the MODIS Deep Blue aerosol optical depth product for data assimilation over North Africa. Atmospheric Measurement Techniques, 6(4): 949-969.
Taghavi F, Owlad E, Ackerman S. 2017. Enhancement and identification of dust events in the south-west region of Iran using satellite observations. Journal of Earth System Science, 126(2): 28-44.
Vijayakumar K, Devara PCS, Rao SVB, Jayasankar CK. 2016. Dust aerosol characterization and transport features based on combined ground-based, satellite and model-simulated data. Aeolian Research, 21: 75-85.
Zarasvandi A, Carranza E, Moore F, Rastmanesh F. 2011. Spatio-temporal occurrences and mineralogical–geochemical characteristics of airborne dusts in Khuzestan Province (southwestern Iran). Journal of Geochemical Exploration, 111(3): 138-151.
_||_