ارزيابی تاثير مدل¬ رقومی ارتفاع، روش زمين آمار و شاخص¬های گياهی در برآورد فرسايش خاک (مطالعه موردی: آبخيز ريمله)
محورهای موضوعی : کشاورزی، مرتع داری، آبخیزداری و جنگلداری
صالح آرخی
1
*
,
افشین شعبانی
2
,
سید حسین روشان
3
,
بنیامین عشقی
4
1 - دانشیار گروه جغرافیا، دانشکده علوم انسانی، دانشگاه گلستان، گرگان، ایران
2 - دانشآموخته کارشناسی ارشد، گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشگاه تهران، ایران.
3 - دانشآموخته دکتری، گروه علوم و مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.
4 - دانشجوی کارشناسی ارشد سیستم اطلاعات جغرافیایی، گروه مهندسی نقشه برداری، دانشکده فنی، موسسه غیرانتفاعی لامعی گرگانی، گرگان، ایران
کلید واژه: هدررفت خاک, توسعه پايدار, GIS, RS, RUSLE.,
چکیده مقاله :
فرسايش خاک از معضلات مهم آبخيزهاي کشور است و به عنوان يکي از مهمترين موانع دست¬يابي به توسعه پايدار کشاورزي و منابع طبيعي بهشمار میرود. دقت بالای پارامترهای ورودی مدل RUSEL موجب تخمین دقیقتر هدررفت و فرسایش خاک میشود. در این مطالعه، ضمن تلفیق مدل جهانی فرسایش خاک RUSLE با سنجش از دور (RS) و سامانه اطلاعات جغرافیایی (GIS)، پارامترهای فرسایندگی باران (R)، پوشش گياهي (C) و طول و درجه شيب (LS) با روشهای مختلف تهیه شدند. بدین ترتیب، عامل فرسایندگی باران بر اساس دادههای 25 ساله، 13 ایستگاه بارانسنجی و روشهای کریجینگ معمولی، ساده و عام بدست آمد. عامل پوشش گیاهی نیز بر مبنای شاخصهای NDVI، IPVI و NDBI با استفاده از تصاویر ماهواره لندست 8 تولید شدند. عامل طول و درجه شیب نیز بر اساس مدل رقومی ارتفاع ماهواره SRTM با قدرت تفکیکهای 30 و 90 متر و مجموعه NED با قدرت تفکیک 10 متر تهیه شد. در نهایت با 9 ترکیب میزان فرسایش و بار رسوبی با مدل RUSLE در حوضه برآورد شد. نتایج نشان داد که میانگین هدر رفت خاک، ترکیب شاخص گیاهی NDBI، طول و درجه شیب حاصل از مدل رقومی ارتفاع NED با قدرت تفکیک 10 متر و عامل فرسایندگی باران حاصل از روش درونیابی کریجینگ ساده برابر با 84/16 (تن در سال) میباشد و در مقایسه با رسوب مشاهدهای (5/16 تن در سال) به عنوان ترکيب مناسب انتخاب شد. بر این اساس شاخص NDBI در ترکيب با ساير عوامل نسبت به شاخص NDVI کارايي بیشتری در تهیه فاکتور پوشش گياهي مدل RUSLE دارد.
Soil erosion is one of the important problems of watersheds in the country and is considered as one of the most important obstacles to achieving sustainable development of agriculture and natural resources. The high accuracy of the input parameters of the RUSEL model leads to a more accurate estimation of soil loss and erosion. In this study, while integrating the RUSLE model with remote sensing (RS) and geographic information system (GIS), parameters of rainfall erosivity (R), vegetation cover (C) and slope and length (LS) were prepared with different methods. In this way, the rainfall erosivity factor was obtained based on 25 years of data, 13 rain gauge stations and ordinary, simple and universal kriging methods. Vegetation factor was also produced based on NDVI, IPVI and NDBI indices using Landsat 8 satellite images. The length factor and slope were also prepared based on the SRTM DEM with 30- and 90-meters and NED with 10 meters. Finally, with 9 combinations, the amount of erosion and sediment estimated with the RUSLE model in the watershed. The results showed that the mean soil loss, the composition of the NDBI index, the length and slope steepness obtained from the NED with 10 meters resolution and the rainfall erosivity factor obtained from the simple kriging method is equal to 16.84 (t/y). And compared to the observed sediment (16.5 t/y). Based on this, the NDBI index in combination with other factors is more effective than the NDVI index in preparing the cover factor of the RUSLE model.
1. Arekhi S, Niazi Y, Kalteh A.M. 2012. Soil Erosion and Sediment Yield Modeling Using RS and GIS Techniques: a Case Study, Iran. Arabian Journal of Geosciences, 5(2): 285-296. doi:https://doi.org/10.1007/s12517-010-0220-4.
2. Baiati Khatibi M. 2016. Assessement and Predicting of Soil Erosion Risk at Semi-arid Mountain: Intergeration of the USLE Model and GIS Technique for Soil Conservation Planning Case Study: Sareskandarchy Catchement, Eastern Slope. Journal of Geography and Planning, 19(54): 61-81. (In Persian).
3. Basaran M, Ozcan AU, Erpul GC, Anga MR. 2006. Spatial Variability of Organic Matter and Some Soil Properties of Mineral Topsoil in C¸ Ankiri _Indagi Blackpine (Pinus Nigra) Plantation Region. Journal of Applied Science, 6(2):445–452. doi:https://doi.org/10.3923/jas.2006.445.452.
4. Boyce RC. 1975. Sediment routing with sediment Delivery Ratios. Present and Prospective Technology for ARS. USDA, Washington, D.C. 39: 699-675.
5. Chang KT. 2006. Introduction to Geographic Information Systems. 4th Ed. New York, N.Y. McGrawHill, 2: 376.
6. Elwell HA, Stocking MA. 1976. Vegetal cover to estimate soil erosion hazard in Rhodesia. Geoderma, 15(1):61-70. doi:https://doi.org/10.1016/0016-7061(76)90071-9.
7. Farr T, Kobrick M. 2001. The Shuttle Radar Topography Mission. American Geophysical Union EOS, 81: 583–585.
8. Farr T, Rosen PA, Caro E, Crippen R, Duren R, Hensley S. 2007. The Shuttle Radar Topography Mission. Reviews of Geophysics, 45: 99-118. doi:https://doi.org/10.1029/2005RG000183.
9. Felix FC, Cândido BM, de Moraes JFL. 2023. How suitable are vegetation indices for estimating the (R) USLE C-factor for croplands? A case study from Southeast Brazil. ISPRS Open Journal of Photogrammetry and Remote Sensing, 100050. doi:https://doi.org/10.1016/j.ophoto.2023.100050.
10. Fernandez C, Wu JQ, McCool DK, Stöckle CO. 2003. Estimating water erosion and sediment yield with GIS, RUSLE, and SEDD. Journal of soil and Water Conservation, 58(3): 128-136.
11. Gyeltshen S, Adhikari R, Bahadur Budha P, Thapa G, Kumar Subedi K, Kumar Singh B. 2022. Remote Sensing and GIS based Soil Loss Estimation for Bhutan, using RUSLE model. Geocarto International, 37(21): 6331-6350. doi:https://doi.org/10.1080/10106049.2021.1936210.
12. Hu KL, Yu Y, Zhang FR, Wang R. 2006. The spatial-temporal variability of soil organic matter and its influencing factors in suburban area of Beijing. Scientia Agricultura Sinica, 39: 764-771.
13. Karimi S, Rajabi M, Rezaei Moghaddam MH. 2021. Evaluation and zoning of soil erosion in karst areas by SMLRK Model (case study of Alvand basin of Kermanshah province). Geography and Planning, 24(74): 197-214. doi: 10.22034/gp.2020.10861. (In Persian).
14. Kebede YS, Endalamaw NT, Sinshaw BG, Atinkut H.B. 2021. Modeling soil erosion using RUSLE and GIS at watershed level in the upper beles, Ethiopia. Environmental Challenges, 2: 100009. doi:https://doi.org/10.1016/j.envc.2020.100009.
15. Khodakarami L, Soffianian A, Mohamadi Towfigh E, Mirghafari N. 2014. Study of heavy metals concentration Copper, Zinc and Arsenic soil using RS and GIS techniques (Case study: Kaboudarahang, Razan and Khonjin- Talkhab catchment in Hamedan province). Journal of RS and GIS for Natural Resources, 5(3): 45-55. (In Persian).
16. Kienzle S. 2004. The effect of DEM Raster Resolution on First Order, Second Order and Compound Terrain Derivatives. Transactions in GIS, 8(1): 83-111. doi:https://doi.org/10.1111/j.1467-9671.2004.00169.x.
17. Krishna Bahadur KC. 2012. Spatio-temporal patterns of agricultural expansion and its effect on watershed degradation: a case from the mountains of Nepal. Environmental Earth Sciences, 65(7): 2063-2077. doi 10.1007/s12665-011-1186-6.
18. Kuo KT, Sekiyama A, Mihara M. 2016. Determining C factor of universal soil loss equation (USLE) based on remote sensing. International Journal of Environmental and Rural Development, 7(2): 154-161. doi:https://doi.org/10.1186/s40068-020-00203-3.
19. Lassueur T, Joost S, Randin CF. 2006. Very High Resolution Digital Elevation Models: Do They Improve, Models of Plant Species Distribution? Ecological Modelling, 198(1-2): 139-153. doi:https://doi.org/10.1016/j.ecolmodel.2006.04.004.
20. Lin WT, Lin CY, Chou WC. 2006. Assessment of Vegetation Recovery and Soil Erosion at Landslides Caused by a Catastrophic Earthquake: a Case Study in Central Taiwan. Ecological Engineering, 28(1): 79-89. doi:https://doi.org/10.1016/j.ecoleng.2006.04.005.
21. Lorestan Water Resources Organization. 2018. Sediment discharge report of Kaka Reza River. P. 2. (In Persian).
22. Magdoff F, Weil RR. 2004. Soil organic matter in sustainable agriculture. CRC press.
23. Martin A, Gunter J, Regens J. 2003. Estimating Erosion in a Riverine watershed, Bayou Liberty-Tchefuncta River in Louisiana. Environment Science Pollution Resource, 4: 245-250. doi:https://doi.org/10.1065/espr2003.05.153.
24. Men M, Yu Z, Xu H. 2008. Study on the spatial pattern of rainfall erosivity based on geostatistics in Hebei Province, China. Frontiers of Agriculture in China, 2: 281-289. doi:https://doi.org/10.1007/s11703-008-0042-2.
25. Merritt WS, Letcher RA, Jakeman AJ. 2003. A review of erosion and sediment transport models. Environmental modelling and software, 18(8-9): 761-799. doi:https://doi.org/10.1016/S1364-8152(03)00078-1.
26. Millward AA, Mersey JE. 1999. Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena, 38(2): 109-129. doi:https://doi.org/10.1016/S0341-8162(99)00067-3.
27. Olika G, Fikadu G, Gedefa B. 2023. GIS based soil loss assessment using RUSLE model: A case of Horo district, western Ethiopia. Heliyon, 9(2): e13313. doi:https://doi.org/10.1016/j.heliyon.2023.e13313.
28. Refahi H.Gh. 2014. Water Erosion and Conservation. 7th Edition, University of Tehran Press. (In Persian).
29. Renard KG, Foster GR, Weesies GA, Porter JP. 1991. RUSLE: Revised Universal Soil Loss equation. Journal of Soil and Water Conservation, 46(1): 30-33.
30. Renard KG, Freimund JR. 1994. Using Monthly Precipitation Data to Estimate the R Factor in the Revised USLE. Journal Hydrology, 157: 287-306. doi:https://doi.org/10.1016/0022-1694(94)90110-4.
31. Renschler CS, Harbor J. 2002. Soil Erosion Assessment tools from Point to Regional Scales: The Role of Geomorphologists in Land Management Research and Implementation. Geomorphology, 47(24): 189-209.
32. Sanders BF. 2007. Evaluation of on-line Dems for Flood Inundation Modeling. Advances in Water Resources, 30(8): 1831-1843. doi:https://doi.org/10.1016/j.advwatres.2007.02.005.
33. Soltanei S, Zareh S, Taze M. 2019. Assessment spatial variability of rainfall erosivity factor (Case study: Fars Province). Geography and Planning, 23(68): 157-177. (In Persian).
34. Taheri Babadi Z, Moteshaffeh B, Roshaan SH. 2022. Assessment The Impact of Land use Changes on Soil Erosion using GIS and Remote Sensing Based on The RUSLE Model (Case Study: Behbahan County). Journal of Arid Biom, 12(1): 77-92. doi: 10.29252/aridbiom.2023.19670.1924. (In Persian).
35. Thapa P. 2020. Spatial estimation of soil erosion using RUSLE modeling: a case study of Dolakha district, Nepal. Environmental Systems Research, 9(1): 1-10. doi:http://dx.doi.org/10.21203/rs.3.rs-25478/v4.
36. Wischmeier WH, Smith DD. 1978. Predicting Rainfall Erosion Losses - a Guide for Conservation Planning. USDA, Agricultural Handbook 537. Washington.
37. Wischmeier WH. 1971. Soil Erodibility Nomograph for Farmland and Construction Sites. Journal Soil and Water Conservation, 26: 189-193.
38. Yang X. 2015. Digital mapping of RUSLE slope length and steepness factor across New South Wales, Australia. Soil Research, 53(2): 216-225. doi:https://doi.org/10.1071/SR14208.
39. Zha Y, Gao J, Ni S. 2010. Use of Normalized Difference Built-up Index in Automatically Mapping Urban Areas from TM Imagery. International Journal of Remote Sensing, 24: 583-594. doi:https://doi.org/10.1080/01431160304987.
40. Zhang JX, Chang KT, Wu J.Q. 2008. Effects of DEM resolution and source on soil erosion modelling: a case study using the WEPP model. International Journal of Geographical Information Science, 22(8): 925-942. doi:https://doi.org/10.1080/13658810701776817.
41. Zhang JX, Wu JQ, Chang K, Elliot WJ, Dun LS. 2009. Effects of DEM Source and Resoulation on WEPP Hydrological and Erosion Simulation a Case Study of Two Forest Watershed in Northen IDAHO. American Society of Agricultural and Biological Engineers, 52(2): 447-457. doi:https://doi.org/10.13031/2013.26838.