نقش زمانبندی مصرف درشتمغذیها، آب و الکترولیتها در ارتقای عملکرد بدنی ورزشکاران جوان: مرور روایتی بر راهبردهای تغذیهای پیش، حین و پس از تمرین
محورهای موضوعی : بیوشیمی و تغذیه ورزشی
1 - استادیار، گروه علوم ورزشی، دانشکده علوم انسانی، واحد پرند، دانشگاه آزاد اسلامی، پرند، تهران، ایران.
کلید واژه: زمانبندی مصرف درشتمغذیها در عملکرد ورزشی, کربوهیدرات, پروتئین, چربی, هیدراتاسیون و الکترولیتها,
چکیده مقاله :
این مقاله مروری روایتی به بررسی جامع نقش زمانبندی مصرف درشتمغذیها، مایعات و الکترولیتها در ارتقای عملکرد بدنی ورزشکاران جوان پرداخته است. اهمیت ویژهای که تغذیه در سنین نوجوانی و جوانی دارد بهعلت تأثیر مستقیم آن بر رشد جسمی، هورمونی و عملکردی مورد تأکید قرار گرفته است. نتایج نشان میدهند که نه تنها کیفیت و کمیت درشتمغذیها، بلکه زمان دقیق مصرف آنها در پیش، حین و پس از تمرین، تأثیر معناداری بر عملکرد تمرینی و بازیابی عضلانی دارد. در این مطالعه، مشخص شده که مصرف کربوهیدراتها با دقت زمانی، به حفظ انرژی، پیشگیری از افت گلیکوژن و خستگی عضلانی منجر میشود. همچنین تأکید شده که استفاده از مکملهای کربوهیدرات حین تمرینهای طولانی برای حفظ عملکرد و تمرکز ذهنی بسیار مؤثر است. از طرف دیگر، مصرف هدفمند چربیها بهویژه در تمرینات استقامتی و با شدت متوسط، موجب بهینهسازی ذخایر انرژی و کاهش التهاب پس از تمرین میشود. در زمینه پروتئینها، نتایج نشان میدهند که مصرف آنها در دورههای نزدیک به تمرین، بهویژه بلافاصله پس از تمرین، برای افزایش توده عضلانی و تقویت بازیابی بسیار مهم است. ترکیب پروتئین و کربوهیدرات در نسبتهای مناسب، بهترین رویکرد برای بهینهسازی سنتز پروتئینی و بازسازی ذخایر گلیکوژن است.
مدیریت مصرف آب و الکترولیتها برای نوجوانان و جوانان در ورزش و فعالیت بدنی نیز بهعنوان بخش حیاتی از راهبرد تغذیه ورزشی بررسی شده است. نشان داده شده که تنظیم دقیق مصرف مایعات و الکترولیتها پیش از تمرین برای جلوگیری از کمآبی بدن، حین تمرین برای حفظ تعادل مایعات، و پس از تمرین برای جبران ذخایر از دسترفته، کلیدی است. در نهایت، مقاله بر ضرورت رویکردهای تغذیهای دقیق و فردمحور، و نیاز به دستورالعملهای مشخص برای ورزشکاران جوان، بهویژه در کشورهای در حال توسعه، تأکید دارد تا از رشد و توسعه پایدار آنان حمایت شود.
مدیریت مصرف آب و الکترولیتها برای نوجوانان و جوانان در ورزش و فعالیت بدنی نیز بهعنوان بخش حیاتی از راهبرد تغذیه ورزشی بررسی شده است. نشان داده شده که تنظیم دقیق مصرف مایعات و الکترولیتها پیش از تمرین برای جلوگیری از کمآبی بدن، حین تمرین برای حفظ تعادل مایعات، و پس از تمرین برای جبران ذخایر از دسترفته، کلیدی است. در نهایت، مقاله بر ضرورت رویکردهای تغذیهای دقیق و فردمحور، و نیاز به دستورالعملهای مشخص برای ورزشکاران جوان، بهویژه در کشورهای در حال توسعه، تأکید دارد تا از رشد و توسعه پایدار آنان حمایت شود.
In this narrative review, the most recent scientific research is used to critically evaluate the impact of macronutrient timing, fluid and electrolyte intake, and the athletic performance of young athletes. Optimal nutrition is crucial during the sensitive developmental period of adolescence and youth, characterized by continuous tissue growth, remodeling, and extensive physiological changes. This review unequivocally illustrates that athletic performance and recovery are significantly influenced by precise nutrient timing, in addition to the quality and quantity of nutrients.
Particularly for moderate-to-high-intensity activities, carbohydrates are the primary energy source. The results suggest that optimal carbohydrate intake at specific intervals prior to exercise stabilizes liver and muscle glycogen stores, thereby improving training capacity. Controlled carbohydrate intake effectively prevents declines in blood glucose levels during prolonged exercise, thereby maintaining both cognitive focus and muscular strength. Additionally, the replenishment of glycogen is expedited by consuming carbohydrates in specific quantities immediately after exercise, particularly when they are combined with protein. The review emphasizes the significance of fats as a stable energy source during moderate-intensity activities and endurance exercises. A balanced and timely intake of fat enhances post-exercise hormonal regulation and inflammatory responses. Nevertheless, the necessity of controlled timing and dosage is underscored by the potential for gastrointestinal discomfort that can result from excessive fat consumption, especially during or immediately after exercise.
Proteins also play a critical role in this investigation. Protein synthesis pathways are activated and muscle breakdown is minimized through the consumption of protein at specific times, particularly before and after exercise. Muscle synthesis and energy restoration are significantly improved by the combined consumption of proteins and carbohydrates in specific proportions following exercise. It is also advisable for young athletes to consume protein daily to maintain a positive nitrogen balance and promote muscle growth. The critical role of fluid and electrolyte management in maintaining fluid balance and preventing dehydration is emphasized. The results highlight the importance of precise timing and appropriate intake volumes, especially in hot environments and during prolonged exercise, to maintain the health and performance of young athletes.
In summary, this review underscores the importance of formulating precise, personalized nutritional strategies for young athletes. It recommends that sports nutrition professionals and coaches customize nutritional plans to meet the distinctive physiological and developmental needs of this age group. The insights gained from this review could be a valuable foundation for the development of comprehensive and practical nutritional guidelines for young athletes.
[1] Brenner, J.S., Council on Sports, Fitness. (2016). Sports specialization and intensive training in young athletes. Pediatrics, 138(3).
[2] Desbrow, B. (2021). Youth athlete development and nutrition. Sports Medicine, 51(Suppl 1), 3-12.
[3] Alcock, R., et al. (2024). Youth and adolescent athlete musculoskeletal health: Dietary and nutritional strategies to optimise injury prevention and support recovery. Journal of Functional Morphology and Kinesiology, 9(4), 221.
[4] Lassi, Z., Moin, A., Bhutta, Z. (2017). Nutrition in middle childhood and adolescence. In Child and Adolescent Health and Development (3rd ed.).
[5] Burke, L.M., et al. (2019). International Association of Athletics Federations consensus statement 2019: Nutrition for athletics. International Journal of Sport Nutrition and Exercise Metabolism, 29(2), 73-84.
[6] Amawi, A., et al. (2024). Athletes’ nutritional demands: A narrative review of nutritional requirements. Frontiers in Nutrition, 10, 1331854.
[7] Rodriguez, N.R., Di Marco, N.M., Langley, S. (2009). American College of Sports Medicine position stand: Nutrition and athletic performance. Medicine and Science in Sports and Exercise, 41(3), 709-731.
[8] Heymsfield, S.B., Shapses, S.A. (2024). Guidance on energy and macronutrients across the life span. New England Journal of Medicine, 390(14), 1299-1310.
[9] Papadopoulou, S.K. (2020). Rehabilitation nutrition for injury recovery of athletes: The role of macronutrient intake. Nutrients, 12(8), 2449.
[10] Knoblauch, M. (2024). Micronutrients. In Clinical Nutrition in Athletic Training (pp. 25-40). Routledge.
[11] Muth, A.-K., Park, S.Q. (2021). The impact of dietary macronutrient intake on cognitive function and the brain. Clinical Nutrition, 40(6), 3999-4010.
[12] Ivy, J.L. (1999). Role of carbohydrate in physical activity. Clinical Sports Medicine, 18(3), 469-484.
[13] Turcotte, L.P. (1999). Role of fats in exercise: Types and quality. Clinical Sports Medicine, 18(3), 485-498.
[14] Rankin, J.W. (1999). Role of protein in exercise. Clinical Sports Medicine, 18(3), 499-511.
[15] Latzka, W.A., Montain, S.J. (1999). Water and electrolyte requirements for exercise. Clinical Sports Medicine, 18(3), 513-524.
[16] Barnes, K.A., et al. (2019). Normative data for sweating rate, sweat sodium concentration, and sweat sodium loss in athletes: An update and analysis by sport. Journal of Sports Sciences, 37(20), 2356-2366.
[17] Kerksick, C.M., et al. (2017). International Society of Sports Nutrition position stand: Nutrient timing. Journal of the International Society of Sports Nutrition, 14, 1-21.
[18] Jeukendrup, A. (2014). A step towards personalized sports nutrition: Carbohydrate intake during exercise. Sports Medicine, 44(Suppl 1), S25-S33.
[19] da Silva Castanho, R. (2023). Major nutrological approaches to macronutrients in the performance and body composition of highly trained athletes: A systematic review. International Journal of Nutrology, 16(2).
[20] Bingham, M.E., Borkan, M.E., Quatromoni, P.A. (2015). Sports nutrition advice for adolescent athletes: A time to focus on food. American Journal of Lifestyle Medicine, 9(6), 398-402.
[21] Alghannam, A.F., Gonzalez, J.T., Betts, J.A. (2018). Restoration of muscle glycogen and functional capacity: Role of post-exercise carbohydrate and protein co-ingestion. Nutrients, 10(2).
[22] Murray, B., Rosenbloom, C. (2018). Fundamentals of glycogen metabolism for coaches and athletes. Nutrition Reviews, 76(4), 243-259.
[23] Burke, L.M., Collier, G.R., Hargreaves, M. (1993). Muscle glycogen storage after prolonged exercise: Effect of the glycemic index of carbohydrate feedings. Journal of Applied Physiology, 75(2), 1019-1023.
[24] Naderi, A., et al. (2025). Nutritional strategies to improve post-exercise recovery and subsequent exercise performance: A narrative review. Sports Medicine, 1-19.
[25] Jäger, R., et al. (2017). International Society of Sports Nutrition position stand: Protein and exercise. Journal of the International Society of Sports Nutrition, 14(1), 20.
[26] McIntosh, M.C., et al. (2024). The effects of a sugar-free amino acid-containing electrolyte beverage on 5-kilometer performance, blood electrolytes, and post-exercise cramping versus a conventional carbohydrate-electrolyte sports beverage and water. Journal of the International Society of Sports Nutrition, 21(1), 2296888.
[27] Martín-Rodríguez, A., et al. (2024). Advances in understanding the interplay between dietary practices, body composition, and sports performance in athletes. Nutrients, 16(4), 571.
[28] Noakes, T.D. (2022). What is the evidence that dietary macronutrient composition influences exercise performance? A narrative review. Nutrients, 14(4), 862.
[29] Varghese, M., Ruparell, S., LaBella, C. (2022). Youth athlete development models: A narrative review. Sports Health, 14(1), 20-29.
[30] Hargreaves, D., et al. (2022). Strategies and interventions for healthy adolescent growth, nutrition, and development. The Lancet, 399(10320), 198-210.
[31] North, M., et al. (2022). Nutritional considerations in high performance youth soccer: A systematic review. Journal of Science in Sport and Exercise, 4(3), 195-212.
[32] Garthe, I., Maughan, R.J. (2018). Athletes and supplements: Prevalence and perspectives. International Journal of Sport Nutrition and Exercise Metabolism, 28(2), 126-138.
[33] Benardot, D. (2024). Nutrition strategies for young athletes: Myths and realities – A review. Journal of Physical Medicine Rehabilitation and Disability, 10(092), 2.
[34] Kerksick, C.M., et al. (2018). ISSN exercise and sports nutrition review update: Research and recommendations. Journal of the International Society of Sports Nutrition, 15(1), 38.
[35] Tarmast, D. (2019). Metabolism and nutrients intake in adolescents in exercise: Carbohydrates. In The 4th National Conference on Novel Approaches to Education and Research.
[36] Nagashima, Y., et al. (2024). High-carbohydrate energy intake during a round of golf maintained blood glucose levels, inhibited energy deficiencies, and prevented fatigue: A randomized, double-blind, parallel group comparison study. Nutrients, 16(23), 4120.
[37] Cheng, G., et al. (2025). An investigation into how the timing of nutritional supplements affects the recovery from post-exercise fatigue: A systematic review and meta-analysis. Frontiers in Nutrition, 12, 1567438.
[38] Trim, W.V., et al. (2023). The impact of physical inactivity on glucose homeostasis when diet is adjusted to maintain energy balance in healthy, young males. Clinical Nutrition, 42(4), 532-540.
[39] Elghobashy, M.E., et al. (2024). Carbohydrate ingestion increases interstitial glucose and mitigates neuromuscular fatigue during single-leg knee extensions. Medicine and Science in Sports and Exercise, 56(8), 1495-1504.
[40] Vigh-Larsen, J.F., et al. (2021). Muscle glycogen metabolism and high-intensity exercise performance: A narrative review. Sports Medicine, 51(9), 1855-1870.
[41] Hawley, J.A., et al. (1997). Carbohydrate-loading and exercise performance: An update. Sports Medicine, 24(2), 73-81.
[42] Smith, J.A.B., et al. (2023). Exercise metabolism and adaptation in skeletal muscle. Nature Reviews Molecular Cell Biology, 24(9), 607-632.
[43] Perez-Castillo, I.M., et al. (2023). Compositional aspects of beverages designed to promote hydration before, during, and after exercise: Concepts revisited. Nutrients, 16(1).
[44] Coggan, A.R., Coyle, E.F. (1991). Carbohydrate ingestion during prolonged exercise: Effects on metabolism and performance. Exercise and Sport Sciences Reviews, 19(1), 1-40.
[45] Brouns, F., et al. (1989). Effect of carbohydrate intake during warming-up on the regulation of blood glucose during exercise. International Journal of Sports Medicine, 10(Suppl 1), S68-S75.
[46] Fuchs, C.J., Gonzalez, J.T., van Loon, L.J.C. (2019). Fructose co-ingestion to increase carbohydrate availability in athletes. Journal of Physiology, 597(14), 3549-3560.
[47] van Loon, L.J., et al. (2000). Maximizing postexercise muscle glycogen synthesis: Carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. American Journal of Clinical Nutrition, 72(1), 106-111.
[48] Ivy, J.L. (2004). Regulation of muscle glycogen repletion, muscle protein synthesis and repair following exercise. Journal of Sports Science and Medicine, 3(3), 131-138.
[49] Amawi, A., et al. (2024). Junior athletes’ nutritional demands: A narrative review of consumption and prevalence of eating disorders. Frontiers in Nutrition, 11, 1390204.
[50] Smith, J.W., Holmes, M.E., McAllister, M.J. (2015). Nutritional considerations for performance in young athletes. Journal of Sports Medicine, 2015, 734649.
[51] Tomljanovic, M., et al. (2025). Sports nutrition knowledge and carbohydrate intake in young male elite football players: Insights from a case study of HNK Hajduk Academy. Journal of Functional Morphology and Kinesiology, 10(2), 169.
[52] Jeukendrup, A.E., Saris, W.H., Wagenmakers, A.J. (1998). Fat metabolism during exercise: A review – Part II: Regulation of metabolism and the effects of training. International Journal of Sports Medicine, 19(5), 293-302.
[53] Jeukendrup, A.E., Saris, W.H., Wagenmakers, A.J. (1998). Fat metabolism during exercise: A review – Part I: Fatty acid mobilization and muscle metabolism. International Journal of Sports Medicine, 19(4), 231-244.
[54] Tarmast, D. (2020). Metabolism and nutrients intake in adolescents in exercise: Lipids. In The 3rd National Conference on Health and Lifestyle.
[55] Jeukendrup, A.E., Saris, W.H., Wagenmakers, A.J. (1998). Fat metabolism during exercise: A review – Part III: Effects of nutritional interventions. International Journal of Sports Medicine, 19(6), 371-379.
[56] Alghannam, A.F., Ghaith, M.M., Alhussain, M.H. (2021). Regulation of energy substrate metabolism in endurance exercise. International Journal of Environmental Research and Public Health, 18(9), 4963.
[57] Romijn, J.A., et al. (1993). Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. American Journal of Physiology, 265(3 Pt 1), E380-E391.
[58] Benardot, D. (2021). Advanced sports nutrition. Human Kinetics Publishers.
[59] Antonio, J., et al. (2009). Essentials of sports nutrition and supplements. Springer Science & Business Media.
[60] Patnaik, L. (2024). The role of nutrition in improving performance and recovery for athletes. South Carolina State University.
[61] Weichselbaum, E. (2017). Nutrition and teenagers/young adults. In Public Health Nutrition (2nd ed., pp. 159-174).
[62] Tarmast, D. (2020). Metabolism and nutrients intake in adolescents in exercise: Proteins. In The 4th National Conference on Applied Research in Physical Education, Sport & Athletic Science.
[63] Magalhães, P.M., et al. (2024). Effects of a 16-week training program with a pyramidal intensity distribution on recreational male cyclists. Sports, 12(1), 17.
[64] Hayes, A.M., et al. (2025). Moderating carbohydrate digestion rate in mice promotes fat oxidation and metabolic flexibility revealed through a new approach to assess metabolic substrate utilization. European Journal of Nutrition, 64(2), 1-19.
[65] Frisancho, A.R. (2003). Reduced rate of fat oxidation: A metabolic pathway to obesity in the developing nations. American Journal of Human Biology, 15(4), 522-532.
[66] Wang, L., Meng, Q., Su, C.H. (2024). From food supplements to functional foods: Emerging perspectives on post-exercise recovery nutrition. Nutrients, 16(23).
[67] Weyh, C., Kruger, K., Strasser, B. (2020). Physical activity and diet shape the immune system during aging. Nutrients, 12(3).
[68] Shao, T., et al. (2021). Physical activity and nutritional influence on immune function: An important strategy to improve immunity and health status. Frontiers in Physiology, 12, 751374.
[69] Chapman-Lopez, T.J., Koh, Y. (2022). The effects of medium-chain triglyceride oil supplementation on endurance performance and substrate utilization in healthy populations: A systematic review. Journal of Obesity & Metabolic Syndrome, 31(3), 217-229.
[70] Carbone, J.W., Pasiakos, S.M. (2019). Dietary protein and muscle mass: Translating science to application and health benefit. Nutrients, 11(5).
[71] Baranauskas, M., Kupciunaite, I., Stukas, R. (2023). Dietary intake of protein and essential amino acids for sustainable muscle development in elite male athletes. Nutrients, 15(18), 4003.
[72] Esmarck, B., et al. (2001). Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. The Journal of Physiology, 535(1), 301-312.
[73] Bird, S.P., et al. (2024). Supplementation strategies for strength and power athletes: Carbohydrate, protein, and amino acid ingestion. Nutrients, 16(12), 1886.
[74] Craven, J., et al. (2021). The effect of consuming carbohydrate with and without protein on the rate of muscle glycogen re-synthesis during short-term post-exercise recovery: A systematic review and meta-analysis. Sports Medicine – Open, 7, 1-15.
[75] Li, G., Li, Z., Liu, J. (2024). Amino acids regulating skeletal muscle metabolism: Mechanisms of action, physical training dosage recommendations and adverse effects. Nutrition & Metabolism (London), 21(1), 41.
[76] Witard, O.C., Hearris, M., Morgan, P.T. (2025). Protein nutrition for endurance athletes: A metabolic focus on promoting recovery and training adaptation. Sports Medicine, 1-16.
[77] Tarmast, D., Ghosh, A.K. (2024). The impact of carbohydrate, protein, and combined carbohydrate-protein supplementation on muscle damage and oxidative stress markers during prolonged cycling performance in the heat. Asian Journal of Sports Medicine, 15(2).
[78] Ahmed, T.A.E., et al. (2025). Effect of increased protein intake before pre-event on muscle fatigue development and recovery in female athletes. Journal of Education and Health Promotion, 14(1), 6.
[79] Vitale, K., Getzin, A. (2019). Nutrition and supplement update for the endurance athlete: Review and recommendations. Nutrients, 11(6).
[80] Moore, D.R. (2019). Protein metabolism in active youth: Not just little adults. Exercise and Sport Sciences Reviews, 47(1), 29-36.
[81] Clauss, M., Jensen, J. (2025). Effect of exercise intensity, duration, and volume on protein oxidation during endurance exercise in humans: A systematic review with meta-analysis. Scandinavian Journal of Medicine & Science in Sports, 35(4), e70038.
[82] Ivy, J.L., Ferguson-Stegall, L.M. (2014). Nutrient timing: The means to improved exercise performance, recovery, and training adaptation. American Journal of Lifestyle Medicine, 8(4), 246-259.
[83] Keefe, M.S., et al. (2024). Importance of electrolytes in exercise performance and assessment methodology after heat training: A narrative review. Applied Sciences, 14(22), 10103.
[84] Hoque, M. (2023). A review on different dietary sources of important vitamins and electrolytes. International Journal of Research Publication and Reviews, 4(8), 731-736.
[85] Broad, E., Burke, L.M. (2019). Principles of sports nutrition. In Sports Nutrition for Paralympic Athletes (2nd ed., pp. 21-69). CRC Press.
[86] Maqsood, S., et al. (2025). Date (Phoenix dactylifera L.) fruit as a functional food for enhancing athletic performance and recovery: A new perspective. eFood, 6(3), e70055.
[87] Arnaoutis, G., et al. (2015). Fluid balance during training in elite young athletes of different sports. The Journal of Strength & Conditioning Research, 29(12), 3447-3452.
[88] Cheuvront, S.N., Kenefick, R.W. (2014). Dehydration: Physiology, assessment, and performance effects. Comprehensive Physiology, 4(1), 257-285.
[89] Carlton, A., Orr, R.M. (2015). The effects of fluid loss on physical performance: A critical review. Journal of Sport and Health Science, 4(4), 357-363.
[90] American College of Sports Medicine, et al. (2007). American College of Sports Medicine position stand: Exercise and fluid replacement. Medicine and Science in Sports and Exercise, 39(2), 377-390.
[91] Veniamakis, E., et al. (2022). Effects of sodium intake on health and performance in endurance and ultra-endurance sports. International Journal of Environmental Research and Public Health, 19(6).
[92] Van Regenmortel, N., et al. (2022). Effect of sodium administration on fluid balance and sodium balance in health and the perioperative setting: Extended summary with additional insights from the MIHMoSA and TOPMAST studies. Journal of Critical Care, 67, 157-165.
[93] McDermott, B.P., et al. (2017). National Athletic Trainers' Association position statement: Fluid replacement for the physically active. Journal of Athletic Training, 52(9), 877-895.
[94] Baker, L.B. (2019). Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature (Austin), 6(3), 211-259.
[95] Fan, P.W., Burns, S.F., Lee, J.K.W. (2020). Efficacy of ingesting an oral rehydration solution after exercise on fluid balance and endurance performance. Nutrients, 12(12), 3826.
[96] Maughan, R.J. (1991). Fluid and electrolyte loss and replacement in exercise. Journal of Sports Sciences, 9(Special No.), 117-142.
[97] Casa, D.J., et al. (2000). National Athletic Trainers' Association position statement: Fluid replacement for athletes. Journal of Athletic Training, 35(2), 212.
[98] Maughan, R.J., et al. (2007). The use of dietary supplements by athletes. Journal of Sports Sciences, 25(Suppl 1), S103-S113.
[99] Krisher, L., et al. (2020). Electrolyte beverage intake to promote hydration and maintain kidney function in Guatemalan sugarcane workers laboring in hot conditions. Journal of Occupational and Environmental Medicine, 62(12), e696-e703.