بررسی اثر نانو ذرات کیتوزان و کیتوزان بر برخی صفات فیزیولوژیک و فیتوشیمیایی گیاه دارویی سیاه دانه Nigella sativa L.
محورهای موضوعی :
گیاهان دارویی
فرحناز مهدی پور
1
,
سارا سعادتمند
2
*
,
علیرضا ایرانبخش
3
,
بهاره نوروزی
4
,
زهرا اوراقی اردبیلی
5
1 - دانشجوی دکتری، گروه زیستشناسی، دانشکده علوم پایه، واحد علوم وتحقیقات، دانشگاه آزاداسلامی، تهران، ایران
2 - دانشیار، گروه زیستشناسی، دانشکده علوم پایه، واحد علوم وتحقیقات، دانشگاه آزاداسلامی، تهران، ایران
3 - استاد، گروه زیستشناسی، دانشکده علوم پایه، واحد علوم وتحقیقات، دانشگاه آزاداسلامی، تهران، ایران
4 - استادیار، گروه زیستشناسی، دانشکده علوم پایه، واحد علوم وتحقیقات، دانشگاه آزاداسلامی، تهران، ایران
5 - دانشیار، گروه زیستشناسی، دانشکده علوم پایه، واحد گرمسار، دانشگاه آزاداسلامی،گرمسار، ایران
تاریخ دریافت : 1400/09/01
تاریخ پذیرش : 1401/01/26
تاریخ انتشار : 1401/05/30
کلید واژه:
آنتیاکسیدان,
پراکسیداسیون لیپید,
سیاه دانه (Nigella sativa L.),
نانو ذرات کیتوزان,
چکیده مقاله :
سیاه دانه (Nigella sativa L.) ازخانواده آلاله،یکی از بهترین منابع آنتیاکسیدانهای طبیعی به شمار میرود. با توجه به تاثیر مثبت کیتوزان بر گیاهان دارویی گوناگون در این مطالعه به بررسی عملکرد رویشی و شیمیایی این گیاه تحت تیمار نانوذرات کیتوزان پرداختیم. فاکتورهای آزمایش شامل محلول دهی کیتوزان ونانوذرات آن با غلظتهای 0.01، 0.05، 0.2، 1، 4 (pH 5) درصد بودند.سنجشها در سال 1400 در آزمایشگاه رازی دانشگاه آزاد، واحد علوم و تحقیقات تهران بر روی عصاره دانه و برگ گیاه تیمارشده انجام گردید. عصارهگیری به روش پرس سرد انجام شد.برخی از صفات نظیر جوانهزنی (تعداد، درصد، شاخص و ضریب سرعت جوانهزنی)، پارامترهای رشد (طول ریشهچه و ساقه چه،وزن تر ریشه چه وساقه چه و وزن خشک ریشه چه و ساقه چه)،رنگیزه ها،میزان فنل کل برگ (فولین-سیوکالتو)، فلاونوئید کل برگ (رنگ سنجی آلومینیوم کلرید)، فعالیت آنتیاکسیدانی برگ (DPPH)، پراکسیداسیون لیپیدهای غشاء برگ (سنجش غلظت MDA) ومیزان پروتئین محلول دانه و برگ (بردفورد) ارزیابی شدند. آزمایش به صورت طرح کاملاً تصادفی با 3 تکرار و مقایسه میانگین دادهها با استفاده آزمون دانکن در سطح آماری5 درصد انجام شد.نتایج نشان داد درصدهای تیماری مورد نظر بر همه صفات مورد ارزیابی(جز وزن تر ریشه چه)تاثیر معنی داری دارند. تیمار 1 تا 0.01 درصد نانو ذرات کیتوزان سبب افزایش پارامترهای رشد و جوانه زنی شد.همچنین میزان فنل،فلاونوئید و فعالیت آنتیاکسیدانی در مقایسه با شاهد افزایش نشان داد که بیشترین مقدار افزایش در غلظتهای 1 و 0.01 درصد نانوذرات کیتوزان مشاهده شد. حداکثر افزایش میزان رنگدانهها تحت تاثیر غلظت1 و0.2 درصد نانوذرات کیتوزان بود.هر دو تیمار در غلظت 1 درصد سبب کاهش مقدار MDA نسبت به کنترل شدند. مقدار پروتئین کل در برگ و دانه تحت تاثیر تیمارها کاهش یافت .به طورکلی نتیجه شد که تیمار نانو ذرات کیتوزان به عنوان نوعی محرک زیستی بر بهبود ویژگیهای کیفی سیاه دانه تاثیر مثبتی داشته و نانوذرات کیتوزان به عنوان محرکی مناسب جهت افزایش رشد پیشنهاد میشود.
چکیده انگلیسی:
Black cumin (Nigella sativa L.) from the Ranunculaceae family is considered one of the best sources of natural antioxidants. Due to the positive effect of chitosan on various medicinal plants, in this study we investigated the vegetative and chemical performance of this plant under the treatment of chitosan nanoparticles. Experimental factors included solubilization of chitosan and its nanoparticles with concentrations of 0.01, 0.05, 0.2, 1, 4 (pH 5) percent. Assays were performed on the seed and leaf extracts of the treated plant at Razi Laboratory of Azad University, Science and Research Branch of Tehran in 2021. Extraction was done by cold pressing method. Some traits such as germination (number, percentage, index and germination rate), growth parameters (radicle and plumule length, fresh radicle and plumule weight and radicle and plumule dry weight), pigments, total leaf phenol content (Folin-Ciocalteau) total leaf flavonoids (aluminum chloride colorimetric assay), leaf antioxidant activity (DPPH), leaf membrane lipid peroxidation (MDA concentration) and soluble protein content Seeds and leaves (Bradford) were evaluated. The experiment was conducted as a completely randomized design with 3 replications and the comparison of data means was performed using Duncan's test at a probability level of 5%. The results showed that the treatment percentages had a significant effect on all evaluated traits (except the fresh weight of the radicle). Treatment of 1% and 0.01% of chitosan nanoparticles increased the growth and germination parameters. In addition, the amount of phenol, flavonoids and antioxidant activity increased compared to the control showed that the highest increase was observed in concentrations of 1% and 0.01% chitosan nanoparticles. The maximum increase in the amount of pigments was due to the concentration of 1% and 0.2% of chitosan nanoparticles. Both treatments at a concentration of 1% reduced the amount of MDA compared to the control. The amount of total protein in leaves and seeds decreased under the influence of the treatments .In general, it was concluded that the treatment of chitosan nanoparticles as a bio stimulant has a positive effect on improving the quality characteristics of black seed and they are also suggested as a suitable stimulus to increase growth.
منابع و مأخذ:
Ahmad, M. F., Ahmad, F. A., Ashraf, S. A., Saad, H.H., Wahab, S., Khan, M.I., Ali, M., Mohan, S., Hakeem, K.R., & Athar, M. T. 2021. An updated knowledge of Black seed (Nigella sativa): Review of phytochemical constituents and pharmacological properties. Journal of herbal medicine, 25, 100404. https://doi.org/ 10.1016/j.hermed.2020.100404
Zehtab-Salmasi, S., Javanshir, A., Omidbaigi, R., Alyari, H., & Ghassemi-Golezani, K. 2001. Effects of water supply and sowing date on performance and essential oil production of anise (pimpinella anisum l.). Acta Agronomica Hungarica, 49: 75-81. DOI:17557/tjfc.92800
Amer, A.H., & Shoala, T. 2020. Physiological and phenotypic characters of sweet marjoram in response to pre-harvest application of hydrogen peroxide or chitosan nanoparticles. Scientia Horticulturae, 268, 109374. DOI:1016/j.scienta.2020.109374
Amiri, A., Ismailzadeh Mahabadi, p., Sirus Mehr, A.R. 2014. The effect of chitosan foliar application on Yield and yield components of safflower in arteries (drought stress). Paper presented at the National Conference on Engineering and Management Agriculture. Sustainable environment and natural resources, Hamadan.iran.
Balyan, P., Shinde, S., & Ali, A. 2021. Potential activities of nanoparticles synthesized from Nigella sativa L. and its phytoconstituents: An overview. Journal of Phytonanotechnology and Pharmaceutical Sciences, 1(2): 1-9.
Botnick, I. X. 2012. Distribution of primary and specialized metabolites in Nigella sativa seeds, a spice with vast traditional and historical uses. Molecules, 17(9): 10159-10177.
Braca, A., Sortino, C., Politi, M., Morelli, I., & Mendez, J. 2002. Antioxidant activity of flavonoids from Licania licaniaeflora. Journal of ethnopharmacology, 79(3): 379-381.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2): 248-254.
Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1): 25-30.
Chandra, S., Chakraborty, N., Dasgupta, A., Sarkar, J., Panda, K., & Acharya, K. (2015). Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Scientific reports, 5(1): 1-14.
Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis, 10(3).
Chen, J., Zou, X., Liu, Q., Wang, F., Feng, W., & Wan, N. 2014. Combination effect of chitosan and methyl jasmonate on controlling Alternaria alternata and enhancing activity of cherry tomato fruit defense mechanisms. Crop Protection, 56: 31-36.
Divya, K., & Jisha, M. S. 2018. Chitosan nanoparticles preparation and applications. Environmental chemistry letters, 16(1): 101-112.
Di Domenico, F., Foppoli, C., Coccia, R., & Perluigi, M. 2012. Antioxidants in cervical cancer: chemopreventive and chemotherapeutic effects of polyphenols. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1822(5): 737-747.
Ali, E. F., El-Shehawi, A. M., Ibrahim, O. H. M., Abdul-Hafeez, E. Y., Moussa, M. M., & Hassan, F. A. S. 2021. A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus (L.) through biochemical and gene expression modulation. Plant Physiology and Biochemistry, 161: 166-175.
El-Tahir, K. E. D. H., & Bakeet, D. M. 2006. The black seed Nigella sativa Linnaeus-A mine for multi cures: a plea for urgent clinical evaluation of its volatile oil. Journal of Taibah University Medical Sciences, 1(1):1-19.
Hassan, F. A. S., Morsi, M. M., & Aljoudi, N. G. S. 2017. Alleviating the Adverse Effects of Salt Stress in Rosemary by Salicylic Acid Treatment. Research journal of pharmaceutical biological and chemical sciences, 8(3): 1980-1995.
Faizan, M., Rajput, V. D., Al-Khuraif, A. A., Arshad, M., Minkina, T., Sushkova, S., & Yu, F. 2021. Effect of foliar fertigation of chitosan nanoparticles on cadmium accumulation and toxicity in Solanum lycopersicum. Biology, 10(7): 666.
Farshid, A. 2017. The effect of different levels of chitosan on the vegetative yield of peppermint. Paper presented at the The Second International Conference on Modern Agreements in Agricultural Sciences, Natural Resources and Environment.
Fazeli, A., Zarei, B., & Tahmasebi, Z. 2017. The effect of salinity stress and salicylic acid on some physiological and biochemical traits of Black cumin (Nigella sativa L.). Iranian Journal of Plant Biology, 9(4): 69-84.
Sato, F., Yoshioka, H., Fujiwara, T., Higashio, H., Uragami, A., & Tokuda, S. 2004. Physiological responses of cabbage plug seedlings to water stress during low-temperature storage in darkness. Scientia Horticulturae, 101(4): 349-357.
Ghasemi, B., Hosseini, R., & Niri, F. D. 2015. The effect of cobalt and chitosan nanoparticles on the production of artemisinin and Artemisia annua in DBR and 2 SQS expressed two key genes. Genetic engineering and biosafety, 4(1): 25-39.
Gorzi, R., Bernard, F., & Reza Ghalamboran, M. 2018. The effect of chitosan nanoparticles for the production and spread of yellow pigments in root cultivation of safflower. Journal of Medicinal Plants Biotechnology, 4(First): 16-27.
Yin, H., Fretté, X. C., Christensen, L. P., & Grevsen, K. 2012. Chitosan oligosaccharides promote the content of polyphenols in Greek oregano (Origanum vulgare ssp. hirtum). Journal of agricultural and food chemistry, 60(1): 136-143.
Ismailzadeh Bahabadi, S., Sharifi, M., Safaei, Z., & Behmanesh, M. 2013. Increase the production of lignin and compounds Phenylpropanoid by chitosan in linoleum cell culture. Journal of Plant Biology, 11: 13-26.
Kabiri , R., Nasibi, F., & Farah, B. H. 2013. Study of some oxidative parameters due to drought stress in black seed plant under hydroponic cultivation. Plant process and function, 3(1): 11-19.
Khaje, H., & Naderi, S. 2014. The effect of chitosan on some properties of antioxidant enzymes and Biochemical in Melissa. Journal of Crop Science in Arid Areas, 1(1): 100-116.
Abbasi Khalaki, M., Moameri, M., Asgari Lajayer, B., & Astatkie, T. 2021. Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant growth regulation, 93(1): 13-28.
Khanna-Chopra, R., & Selote, D. S. 2007. Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than-susceptible wheat cultivar under field conditions. Environmental and Experimental Botany, 60(2): 276-283.
Kulisic, T., Radonic, A., Katalinic, V., & Milos, M. 2004. Use of different methods for testing antioxidative activity of oregano essential oil. Food chemistry, 85(4): 633-640.
Mahdavi, B., & Rahimi, A. 2013. Seed priming with chitosan improves the germination and growth performance of ajowan (Carum copticum) under salt stress. EurAsian J BioSci 7: 69–76.
Mahdavi, S. A. 2013. Effect of different concentrations of chitosan on seed germination and antioxidant enzymes of safflower (carthamus tntorius L) under dehydration. 26(3): 365-352.
Mahmoudi, R., Tajali Ardakani, M., & Bardania, H. 2019. Cytotoxicity and apoptotic effect of chitosan nanoparticles containing hydroalcoholic extract of physalis alkekengi on HT29 cell line. Journal of Mazandaran University of Medical Sciences, 29(180): 102-107.
Mansouri, A., Ahmadi, A., & Omidi, H. 2016. Effect of chitosan oxide nanoparticles on germination and early growth indices of Cathamus tinctorius L. under salinity stress. Journal of Seed Research, 7(24): 72-81.
McDonald, S., Prenzler, P. D., Antolovich, M., & Robards, K. 2001. Phenolic content and antioxidant activity of olive extracts. Food chemistry, 73(1): 73-84.
Mehregan, M., Mehrafarin, A., Labbafi, M. R., & Naghdi Badi, H. 2017. Effect of different concentrations of chitosan biostimulant on biochemical and morphophysiological traits of stevia plant (Stevia rebaudiana Bertoni). Journal of medicinal plants, 16(62): 169-181.
Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in plant science, 7(9): 405-410.
Packer&Health. 1968. Photoperoxidation in isolated chloroplast.I.Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125: 189-198.
Pandjaitan, N., Howard, L. R., Morelock, T., & Gil, M. I. 2005. Antioxidant capacity and phenolic content of spinach as affected by genetics and maturation. Journal of Agricultural and Food Chemistry, 53(22): 8618-8623.
Pichyangkura, R., & Chadchawan, S. 2015. Biostimulant activity of chitosan in horticulture. Scientia Horticulturae, 196(30): 49-65.
Pliankong, P., Suksa-Ard, P., & Wannakrairoj, S. 2018. Chitosan Elicitation for Enhancing of Vincristine and Vinblastine Accumulation in Cell Culture of Catharanthus roseus (L.) G. Don. Journal of Agricultural Science, 10(12): 287-293.
Ranjan, P., Das, M. P., Kumar, M. S., Anbarasi, P., Sindhu, S., Sagadevan, E., & Arumugam, P. 2013. Green synthesis and characterization of silver nanoparticles from Nigella sativa and its application against UTI causing bacteria. J. Acad. Ind. Res, 2(1): 45-49.
Sairam, R. K., Rao, K. V., & Srivastava, G. C. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant science, 163(5): 1037-1046.
Sarmadnia, G. H., & Koochaki, e. 1991. Crop physiology. Mashhad: Mashhad University Jihad.
Bourgou, S., Pichette, A., Marzouk, B., & Legault, J. 2010. Bioactivities of black cumin essential oil and its main terpenes from Tunisia. South African Journal of Botany, 76(2): 210-216.
Selote, D. S., & Khanna‐Chopra, R. 2004. Drought‐induced spikelet sterility is associated with an inefficient antioxidant defence in rice panicles. Physiologia Plantarum, 121(3): 462-471.
Seyed mohamadi, K., Rahimi, A., Zardashti, M., & Rezaee, M. 2017. The effect of sterilization and potassium nitrate treatments on black cumin(Nigella sativa L.) germination. Paper presented at the National Conference on Medicinal Plants, Iran. Shahroud University of Technology.
Shui, G., Leong, L. P. 2002. Separation and determination of organic acids and phenolic compounds in fruit juices and drinks by high-performance liquid chromatography. Journal of chromatography A, 977(1): 89-96.
Sitthichai, I., Supatcharee, A., Jaturon, B., Supataechasit, Y., Saranya, T., Sudtida, B., Natthapol, L., Pannawat, C., Nareelak, T., Chadaporn, C., Wannisa, S. 2020. Evaluation of antioxidant capacity and reproductive toxicity of aqueous extract of Thai Mucuna pruriens seeds. Journal of Integrative Medicine.18(3): 265-273.
Soheili, M., Khandan, M. A., & Salami, M. 2017. Evaluation of anti-oxidant activity of Lavandula angustifolia using DPPH method. Journal of Arak University of Medical Sciences, 19(12): 70-77.
Sultana, B., Anwar, F., & Ashraf, M. 2009. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 14(6): 2167-2180.
Tiji, S., Benayad, O., Berrabah, M., El Mounsi, I., & Mimouni, M. 2021. Phytochemical profile and antioxidant activity of Nigella sativa L growing in Morocco. The Scientific World Journal, 2021.
Tokatlı, K., & Demirdöven, A. 2020. Effects of chitosan edible film coatings on the physicochemical and microbiological qualities of sweet cherry (Prunus avium L.). Scientia Horticulturae, 259: 108656.
Wang, Q., Chen, J. N., Zhan, P., Zhang, L., & Kong, Q. Q. 2013. Establishment of a suspension cell system for transformation of Jatropha curcas using nanoparticles. In Advanced Materials Research (Vol. 608, pp. 314-319). Trans Tech Publications Ltd.
Yadollahi Dehchecsme, P., Bagheri, A. A., Amiri, A., & Esmailzade Bahabadi, S. 2014. Effect of drought tension and chitosan foliar application on yield and photosynthetic pigments of sunflower (Heliantus unnuus L.). crop physiology journal, 6(21): 73-83.
Zayed, M. M., Elkafafi, S. H., Zedan, A. M., & Dawoud, S. F. 2017. Effect of nano chitosan on growth, physiological and biochemical parameters of Phaseolus vulgaris under salt stress. Journal of Plant Production, 8(5): 577-585.
Zhong, Y. 2005. Isolation, Characterization of Beta-Chitin from Squid Pens and Calcium Carbonate Crystallization on the Chitin. Scaffold Intel International Science and Engineering Fair Intel ISEF.
Ziaee, G., & Amir, F. 1960. Effectiveness of ‘Nigella’ in Asthma. Alexandria Journal of Medicine, 6: 543- 547.
_||_
Ahmad, M. F., Ahmad, F. A., Ashraf, S. A., Saad, H.H., Wahab, S., Khan, M.I., Ali, M., Mohan, S., Hakeem, K.R., & Athar, M. T. 2021. An updated knowledge of Black seed (Nigella sativa): Review of phytochemical constituents and pharmacological properties. Journal of herbal medicine, 25, 100404. https://doi.org/ 10.1016/j.hermed.2020.100404
Zehtab-Salmasi, S., Javanshir, A., Omidbaigi, R., Alyari, H., & Ghassemi-Golezani, K. 2001. Effects of water supply and sowing date on performance and essential oil production of anise (pimpinella anisum l.). Acta Agronomica Hungarica, 49: 75-81. DOI:17557/tjfc.92800
Amer, A.H., & Shoala, T. 2020. Physiological and phenotypic characters of sweet marjoram in response to pre-harvest application of hydrogen peroxide or chitosan nanoparticles. Scientia Horticulturae, 268, 109374. DOI:1016/j.scienta.2020.109374
Amiri, A., Ismailzadeh Mahabadi, p., Sirus Mehr, A.R. 2014. The effect of chitosan foliar application on Yield and yield components of safflower in arteries (drought stress). Paper presented at the National Conference on Engineering and Management Agriculture. Sustainable environment and natural resources, Hamadan.iran.
Balyan, P., Shinde, S., & Ali, A. 2021. Potential activities of nanoparticles synthesized from Nigella sativa L. and its phytoconstituents: An overview. Journal of Phytonanotechnology and Pharmaceutical Sciences, 1(2): 1-9.
Botnick, I. X. 2012. Distribution of primary and specialized metabolites in Nigella sativa seeds, a spice with vast traditional and historical uses. Molecules, 17(9): 10159-10177.
Braca, A., Sortino, C., Politi, M., Morelli, I., & Mendez, J. 2002. Antioxidant activity of flavonoids from Licania licaniaeflora. Journal of ethnopharmacology, 79(3): 379-381.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2): 248-254.
Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1): 25-30.
Chandra, S., Chakraborty, N., Dasgupta, A., Sarkar, J., Panda, K., & Acharya, K. (2015). Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Scientific reports, 5(1): 1-14.
Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis, 10(3).
Chen, J., Zou, X., Liu, Q., Wang, F., Feng, W., & Wan, N. 2014. Combination effect of chitosan and methyl jasmonate on controlling Alternaria alternata and enhancing activity of cherry tomato fruit defense mechanisms. Crop Protection, 56: 31-36.
Divya, K., & Jisha, M. S. 2018. Chitosan nanoparticles preparation and applications. Environmental chemistry letters, 16(1): 101-112.
Di Domenico, F., Foppoli, C., Coccia, R., & Perluigi, M. 2012. Antioxidants in cervical cancer: chemopreventive and chemotherapeutic effects of polyphenols. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1822(5): 737-747.
Ali, E. F., El-Shehawi, A. M., Ibrahim, O. H. M., Abdul-Hafeez, E. Y., Moussa, M. M., & Hassan, F. A. S. 2021. A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus (L.) through biochemical and gene expression modulation. Plant Physiology and Biochemistry, 161: 166-175.
El-Tahir, K. E. D. H., & Bakeet, D. M. 2006. The black seed Nigella sativa Linnaeus-A mine for multi cures: a plea for urgent clinical evaluation of its volatile oil. Journal of Taibah University Medical Sciences, 1(1):1-19.
Hassan, F. A. S., Morsi, M. M., & Aljoudi, N. G. S. 2017. Alleviating the Adverse Effects of Salt Stress in Rosemary by Salicylic Acid Treatment. Research journal of pharmaceutical biological and chemical sciences, 8(3): 1980-1995.
Faizan, M., Rajput, V. D., Al-Khuraif, A. A., Arshad, M., Minkina, T., Sushkova, S., & Yu, F. 2021. Effect of foliar fertigation of chitosan nanoparticles on cadmium accumulation and toxicity in Solanum lycopersicum. Biology, 10(7): 666.
Farshid, A. 2017. The effect of different levels of chitosan on the vegetative yield of peppermint. Paper presented at the The Second International Conference on Modern Agreements in Agricultural Sciences, Natural Resources and Environment.
Fazeli, A., Zarei, B., & Tahmasebi, Z. 2017. The effect of salinity stress and salicylic acid on some physiological and biochemical traits of Black cumin (Nigella sativa L.). Iranian Journal of Plant Biology, 9(4): 69-84.
Sato, F., Yoshioka, H., Fujiwara, T., Higashio, H., Uragami, A., & Tokuda, S. 2004. Physiological responses of cabbage plug seedlings to water stress during low-temperature storage in darkness. Scientia Horticulturae, 101(4): 349-357.
Ghasemi, B., Hosseini, R., & Niri, F. D. 2015. The effect of cobalt and chitosan nanoparticles on the production of artemisinin and Artemisia annua in DBR and 2 SQS expressed two key genes. Genetic engineering and biosafety, 4(1): 25-39.
Gorzi, R., Bernard, F., & Reza Ghalamboran, M. 2018. The effect of chitosan nanoparticles for the production and spread of yellow pigments in root cultivation of safflower. Journal of Medicinal Plants Biotechnology, 4(First): 16-27.
Yin, H., Fretté, X. C., Christensen, L. P., & Grevsen, K. 2012. Chitosan oligosaccharides promote the content of polyphenols in Greek oregano (Origanum vulgare ssp. hirtum). Journal of agricultural and food chemistry, 60(1): 136-143.
Ismailzadeh Bahabadi, S., Sharifi, M., Safaei, Z., & Behmanesh, M. 2013. Increase the production of lignin and compounds Phenylpropanoid by chitosan in linoleum cell culture. Journal of Plant Biology, 11: 13-26.
Kabiri , R., Nasibi, F., & Farah, B. H. 2013. Study of some oxidative parameters due to drought stress in black seed plant under hydroponic cultivation. Plant process and function, 3(1): 11-19.
Khaje, H., & Naderi, S. 2014. The effect of chitosan on some properties of antioxidant enzymes and Biochemical in Melissa. Journal of Crop Science in Arid Areas, 1(1): 100-116.
Abbasi Khalaki, M., Moameri, M., Asgari Lajayer, B., & Astatkie, T. 2021. Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant growth regulation, 93(1): 13-28.
Khanna-Chopra, R., & Selote, D. S. 2007. Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than-susceptible wheat cultivar under field conditions. Environmental and Experimental Botany, 60(2): 276-283.
Kulisic, T., Radonic, A., Katalinic, V., & Milos, M. 2004. Use of different methods for testing antioxidative activity of oregano essential oil. Food chemistry, 85(4): 633-640.
Mahdavi, B., & Rahimi, A. 2013. Seed priming with chitosan improves the germination and growth performance of ajowan (Carum copticum) under salt stress. EurAsian J BioSci 7: 69–76.
Mahdavi, S. A. 2013. Effect of different concentrations of chitosan on seed germination and antioxidant enzymes of safflower (carthamus tntorius L) under dehydration. 26(3): 365-352.
Mahmoudi, R., Tajali Ardakani, M., & Bardania, H. 2019. Cytotoxicity and apoptotic effect of chitosan nanoparticles containing hydroalcoholic extract of physalis alkekengi on HT29 cell line. Journal of Mazandaran University of Medical Sciences, 29(180): 102-107.
Mansouri, A., Ahmadi, A., & Omidi, H. 2016. Effect of chitosan oxide nanoparticles on germination and early growth indices of Cathamus tinctorius L. under salinity stress. Journal of Seed Research, 7(24): 72-81.
McDonald, S., Prenzler, P. D., Antolovich, M., & Robards, K. 2001. Phenolic content and antioxidant activity of olive extracts. Food chemistry, 73(1): 73-84.
Mehregan, M., Mehrafarin, A., Labbafi, M. R., & Naghdi Badi, H. 2017. Effect of different concentrations of chitosan biostimulant on biochemical and morphophysiological traits of stevia plant (Stevia rebaudiana Bertoni). Journal of medicinal plants, 16(62): 169-181.
Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in plant science, 7(9): 405-410.
Packer&Health. 1968. Photoperoxidation in isolated chloroplast.I.Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125: 189-198.
Pandjaitan, N., Howard, L. R., Morelock, T., & Gil, M. I. 2005. Antioxidant capacity and phenolic content of spinach as affected by genetics and maturation. Journal of Agricultural and Food Chemistry, 53(22): 8618-8623.
Pichyangkura, R., & Chadchawan, S. 2015. Biostimulant activity of chitosan in horticulture. Scientia Horticulturae, 196(30): 49-65.
Pliankong, P., Suksa-Ard, P., & Wannakrairoj, S. 2018. Chitosan Elicitation for Enhancing of Vincristine and Vinblastine Accumulation in Cell Culture of Catharanthus roseus (L.) G. Don. Journal of Agricultural Science, 10(12): 287-293.
Ranjan, P., Das, M. P., Kumar, M. S., Anbarasi, P., Sindhu, S., Sagadevan, E., & Arumugam, P. 2013. Green synthesis and characterization of silver nanoparticles from Nigella sativa and its application against UTI causing bacteria. J. Acad. Ind. Res, 2(1): 45-49.
Sairam, R. K., Rao, K. V., & Srivastava, G. C. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant science, 163(5): 1037-1046.
Sarmadnia, G. H., & Koochaki, e. 1991. Crop physiology. Mashhad: Mashhad University Jihad.
Bourgou, S., Pichette, A., Marzouk, B., & Legault, J. 2010. Bioactivities of black cumin essential oil and its main terpenes from Tunisia. South African Journal of Botany, 76(2): 210-216.
Selote, D. S., & Khanna‐Chopra, R. 2004. Drought‐induced spikelet sterility is associated with an inefficient antioxidant defence in rice panicles. Physiologia Plantarum, 121(3): 462-471.
Seyed mohamadi, K., Rahimi, A., Zardashti, M., & Rezaee, M. 2017. The effect of sterilization and potassium nitrate treatments on black cumin(Nigella sativa L.) germination. Paper presented at the National Conference on Medicinal Plants, Iran. Shahroud University of Technology.
Shui, G., Leong, L. P. 2002. Separation and determination of organic acids and phenolic compounds in fruit juices and drinks by high-performance liquid chromatography. Journal of chromatography A, 977(1): 89-96.
Sitthichai, I., Supatcharee, A., Jaturon, B., Supataechasit, Y., Saranya, T., Sudtida, B., Natthapol, L., Pannawat, C., Nareelak, T., Chadaporn, C., Wannisa, S. 2020. Evaluation of antioxidant capacity and reproductive toxicity of aqueous extract of Thai Mucuna pruriens seeds. Journal of Integrative Medicine.18(3): 265-273.
Soheili, M., Khandan, M. A., & Salami, M. 2017. Evaluation of anti-oxidant activity of Lavandula angustifolia using DPPH method. Journal of Arak University of Medical Sciences, 19(12): 70-77.
Sultana, B., Anwar, F., & Ashraf, M. 2009. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 14(6): 2167-2180.
Tiji, S., Benayad, O., Berrabah, M., El Mounsi, I., & Mimouni, M. 2021. Phytochemical profile and antioxidant activity of Nigella sativa L growing in Morocco. The Scientific World Journal, 2021.
Tokatlı, K., & Demirdöven, A. 2020. Effects of chitosan edible film coatings on the physicochemical and microbiological qualities of sweet cherry (Prunus avium L.). Scientia Horticulturae, 259: 108656.
Wang, Q., Chen, J. N., Zhan, P., Zhang, L., & Kong, Q. Q. 2013. Establishment of a suspension cell system for transformation of Jatropha curcas using nanoparticles. In Advanced Materials Research (Vol. 608, pp. 314-319). Trans Tech Publications Ltd.
Yadollahi Dehchecsme, P., Bagheri, A. A., Amiri, A., & Esmailzade Bahabadi, S. 2014. Effect of drought tension and chitosan foliar application on yield and photosynthetic pigments of sunflower (Heliantus unnuus L.). crop physiology journal, 6(21): 73-83.
Zayed, M. M., Elkafafi, S. H., Zedan, A. M., & Dawoud, S. F. 2017. Effect of nano chitosan on growth, physiological and biochemical parameters of Phaseolus vulgaris under salt stress. Journal of Plant Production, 8(5): 577-585.
Zhong, Y. 2005. Isolation, Characterization of Beta-Chitin from Squid Pens and Calcium Carbonate Crystallization on the Chitin. Scaffold Intel International Science and Engineering Fair Intel ISEF.
Ziaee, G., & Amir, F. 1960. Effectiveness of ‘Nigella’ in Asthma. Alexandria Journal of Medicine, 6: 543- 547.