اثر تابش نور LED و محلول¬پاشی با سلنیوم و یُد بر صفات رشدی و خصوصیات کیفی گیاه ریحان دارچینی (Ocimum basilicum var. cinnamon)
محورهای موضوعی : اکولوژی محیطی
افسانه نورزایی
1
,
مریم رحیمی
2
*
,
داریوش رمضان
3
,
زینب محکمی
4
,
یوسف فرخ زاد
5
1 - دانش آموخته کارشناسی ارشد، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران
2 - استادیار، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران.
3 - Department of Horticultural Sciences, Faculty of Agriculture, University of Zabol, Zabol, Iran
4 - عضو هیأت علمی پژوهشکده کشاورزی دانشگاه زابل
5 - استادیار،گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران.
کلید واژه: ارزش تغدیهای, ریحان, گلخانه, نور تکمیلی,
چکیده مقاله :
تحقیقات اخیر بیانگر تأثیر نورپردازی LED بر تجمع آنتوسیانینها و فلاونوئیدها در گیاهان بوده است. تأثیر تابش نور LED بههمراه محلولپاشی سلنیوم و یُد بر رشد و ترکیب بیوشیمیایی ریحان دارچینی تا حد زیادی ناشناخته مانده است. برای این منظور، مطالعهای بهصورت فاکتوریل سه عاملی (نور LED، غلظتهای 0، 2، 4 و 6 پیپیام سلنیوم و ید) در قالب طرح بلوک کامل تصادفی در سه تکرار (مجموع 96 واحد آزمایش) در گلخانه پژوهشکده کشاورزی پژوهشگاه زابل به اجرا درآمد. نشاءها در مرحله 4 برگی بهگلدانهای اصلی انتقال یافته و محلولهای سلنیوم و یُد در سه تکرار بر گیاهان محلولپاشی شد. پس از ورود 90 درصد بوتهها به فاز گلدهی، برداشت شده و پارامترهای آزمایش اندازهگیری شد. نتایج تجزیه و تحلیل دادهها نشان داد که تیمار 4 پیپیام یُد در حضور نور LED بیشترین محتوای کلروفیل کل (21/36 میکروگرم بر گرم وزن تر) را به خود اختصاص داد. همچنین بیشترین محتوای فلاونوئید (79/2 میلیگرم کوئرستین/گرم ماده خشک) و فنل کل (49/219 میلیگرم گالیک اسید/گرم ماده خشک) در تیمار 4 پیپیام یُد در حضور نور LED حاصل گردید. تیمار 6 پیپیام سلنیوم بههمراه 6 پیپیام یُد در حضور نور LED بالاترین محتوای پتاسیم برگ (3/9323 میکروگرم/گرم ماده خشک) و تیمار 4 پیپیام یُد در حضور نور LED بالاترین محتوای فسفر برگ (87/1 میکروگرم/گرم ماده خشک) را به خود اختصاص دادند. همبستگی مثبت و معناداری بین صفت محتوای فنل کل و محتوای کربوهیدرات محلول (78/0)، محتوای کلروفیل a (50/0)، محتوای کلروفیل b (74/0)، محتوای کلروفیل کل (60/0)، محتوای کارتنوئید (56/0) و محتوای فسفر (82/0) مشاهده شد. بهطور کلی، با توجه به نقش و تأثیر تیمار 4 پیپیام یُد و حضور نور LED در بهبود کیفیت ریحان دارچینی، این تیمار جهت مطالعات بعدی پیشنهاد میگردد.
Recent projects have shown the effect of LED lighting on the accumulation of anthocyanins and flavonoids in plants. To evaluate the horticultural and nutritional characteristics of cinnamon basil (Ocimum basilicum cv. Cinnamon) under supplementary blue light and elicitation with Selenium and Iodine, a factorial study was conducted in a randomized complete block design with three replications. The test factors were: LED light, foliar spraying with Selenium and Iodine at levels of 0, 2, 4, and 6 ppm (total 96 test units). After sowing the seeds in the seedling tray and after the seedlings had 4 leaves, after transferring the seedlings to pots, the plants were placed under blue light conditions and selenium and iodine fertilizers were dissolved in water at concentrations of (0, 2, 4, and 6 ppm) and given to the plants as fertilizer-irrigation. The results of data analysis showed, the Iodine treatment (at 4 ppm concentration) in the presence of LED light had the highest total chlorophyll content (21.36 μg/g wet weight). The highest flavonoid (2.79 mg Q/g D.W.) and total phenol content (219.49 mg GA/ g D.W.) was also obtained in the Iodine elicitation (at 4 ppm concentration) in the presence of LED light. The combined treatment of Selenium and Iodine (both at a concentration of 6 ppm) in the presence of LED light had the highest leaf potassium content (9323.3 µg/g D.W.) and highest leaf phosphorus content (1.87 µg/g D.W.) was measured at the 4 ppm iodine treatment in the presence of LED light. A positive and significant correlation was observed between the total phenol content trait and soluble carbohydrate content (0.78), chlorophyll a content (0.50), chlorophyll b content (0.74), total chlorophyll content (0.60), carotenoid content (0.56) and phosphorus content (0.82). In this study, the presence of light improved chlorophyll activity .
Alsina, I., Dubova, L., Smiltina, Z., Stroksa, L. and Duma, M. (2012). The effect of selenium on yield quality of lettuce. Acta Horticulturae, 939, 269–275.
Baroli, I., Price, G.D., Badger, M.R. and von Caemmerer, S. (2008). The contribution of photosynthesis to the red light response of stomatal conductance. Plant Physiology, 146: 737- 747.
Barros, L., Falcão, S., Baptista, P., Freire, C., Vilas-Boas, M. and Ferreira, I. C. F. R. (2008). Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chemistry, 111(1): 61–66.
Blande, J.D., Holopainen, J.K. and Niinemets, Ü. (2014). Plant volatiles in polluted atmospheres: Stress responses and signal degradation. Plant, Cell and Environment, 37: 1892- 1904.
Blasco, B., Leyva, R., Romero, L. and Ruiz, J.M. (2013). Iodine Effects on Phenolic Metabolism in Lettuce Plants under Salt Stress. Journal of Agricultural and Food Chemistry, 61: 2591–2596.
Blasco, B., Rios, J.J., Cervilla, L.M., Sa´nchez-Rodrigez, E., Ruiz, J.M. and Romero, L. (2008). Iodine biofortification and antioxidant capacity of lettuce: Potential benefits for cultivation and human health. Annals of Applied Biology, 152: 289–299.
Borbély, P., Molnár, Á., Valyon, E., Ördög, A., Horváth-Boros, K., Csupor, D., Fehér, A. and Kolbert, Z. (2021). The Effect of Foliar Selenium (Se) Treatment on Growth, Photosynthesis, and Oxidative-Nitrosative Signalling of Stevia rebaudiana Leaves. Antioxidants, 10, 72.
Chang, C. C., Yang, M. H., Wen, H. M., and Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis, 10(3).
Chen, H., Cheng, Q., Chen, Q., Ye, X., Qu, Y., Song, W., Fahad, S., Gao, J., Saud, S., Xu, Y. and Shen, Y. (2022). Effects of selenium on growth and selenium content distribution of virus-free sweet potato seedlings in water culture. Frontiers in Plant Science, 13:965649.
Dixon, R.A. and Paiva, N.L. (1995). Stress-induced phenylpropanoid metabolism. American Society of Plant Physiologists, 7: 1085- 1097.
Dubey, R.S. and Singh, A. K. (1999). Salinity induces accumulation of soluble sugars and alter the activity of sugar metabolizing enzymes in rice plant. Biologia Plantarum, 53: 1147 -1153.
Fraszczak, B., Golcz, A., Zawirska-Wojtasiak, R. and Janowska, B. (2014). Growth rate of sweet basil and lemon balm plants grown under fluorescent lamps and LED modules. Acta Scientiarum Polonorum, 13: 3-13.
Freeman, J. L., Hong, Z. and Matthew, A. M., Sirine, F., Steve, P. M. and Pilon -Smits, E. A. H. (2006). Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiology, 142: 124 -134.
Germ, M., Stibilj, V. and Kreft, I. (2007). Metabolic importance of selenium for plants. The European Journal of Plant Science and Biotechnology, 1: 91 -97.
Ghanbari, F., Bag-Nazari, M. and Azizi, A. 2(023). Exogenous application of selenium and nano-selenium alleviates salt stress and improves secondary metabolites in lemon verbena under salinity stress. Scientific Reports, 1;13(1):5352.
Ghasemi, Y., Ghasemi, K., Pirdashti, H. and Asgharzadeh, R. (2016). Effect of selenium enrichment on the growth, photosynthesis and mineral nutrition of broccoli. Notulae Scientia Biologicae, 8: 199–203.
Golubkina, N., Logvinenko, L., Konovalov, D., Garsiya, E., Fedotov, M., Alpatov, A., Shevchuk, O., Skrypnik, L., Sekara, A. and Caruso, G. (2022). Foliar Application of Selenium under Nano Silicon on Artemisia annua: Effects on Yield, Antioxidant Status, Essential Oil, Artemisinin Content and Mineral Composition. Horticulturae. 8(7):597.
Gómez, C. and Izzo, L.G. (2018). Increasing efficiency of crop production with LEDs. AIMS Agriculture and Food, 3, 135–153.
Gonzali, S., Kiferle, C. and Perata, P. (2017). Iodine biofortification of crops: agronomic biofortification, metabolic engineering and iodine bioavailability. Current Opinion in Biotechnology, 44, 16–26.
Handa, N., Kohli, S.K., Sharma, A., Thukral, A.K., Bhardwaj, R., Abd Allah, E.F., Alqarawi, A.A. and Ahmad, P. (2019). Selenium modulates dynamics of antioxidative defence expression, photosynthetic attributes and secondary metabolites to mitigate chromium toxicity in Brassica juncea L. plants. Environmental and Experimental Botany, 161:180–192.
Hasibi, P. (2007). Physiological study of the effect of cold stress on the seedling stage of different rice genotypes. PhD thesis, Shahid Chamran University of Ahvaz. P. 145. (In Farsi)
Hawrylak, B., Matraszek, R. and Szynanska, M. (2007). Response of lettuce (Lactuca sativa L.) to selenium in nutrient solution contaminated with nickel. Vegetable Crops Research Bulletin, 67: 63 -70.
Hawrylak-Nowak, B., Dresler, S. and Wójcik, M. (2014). Selenium affects physiological parameters and phytochelatins accumulation in cucumber (Cucumis sativus L.) plants grown under cadmium exposure. Scientia Horticulturae, 172:10–18.
He, R., Gao, M., Shi, R., Song, S., Zhang, Y., Su, W. and Liu, H. (2020). The Combination of Selenium and LED Light Quality Affects Growth and Nutritional Properties of Broccoli Sprout. Molecules, 25, 4788.
Hernández, R. and Kubota, C. (2012). Tomato seedling growth and morphological responses to supplemental led lighting red:blue ratios under varied daily solar light integrals. Acta Horticulturae, 956: 18- 29.
Irigoyen, J. J., Emerich, D. W., and Sánchez‐Díaz, M. (1992). Alfalfa leaf senescence induced by drought stress: photosynthesis, hydrogen peroxide metabolism, lipid peroxidation and ethylene evolution. Physiologia Plantarum, 84(1), 67-72.
Jiang, C., Zu, C., Lu, D., Zheng, Q., Shen, J., Wang, H. and Li, D. (2017). Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Scientific Reports, 7(1):1–14.
Kaur, S. and Nayyar, H. (2015). Selenium fertilization to salt-stressed mungbean (Vigna radiata L. Wilczek) plants reduces sodium uptake, improves reproductive function, pod set and seed yield. Scientia Horticulturae, 197:304–317.
Kiferle, C., Ascrizzi, R., Martinelli, M., Gonzali, S., Mariotti, L., Pistelli, L., Flamini, G. and Perata, P. (2019). Effect of Iodine treatments on Ocimum basilicum L.: Biofortification, phenolics production and essential oil composition. PLoS ONE, 14(12): e0226559.
Kopsell, D.A., Sams, C.E. and Morrow, R.C. (2015). Blue wavelengths from LED lighting increase nutritionally important metabolites in specialty crops. HortScience, 50 :1285 -1288.
Lee, I., Im, S., Jin, C. R., Heo, H. J., Cho, Y. S., Baik, M. Y., and Kim, D. O. (2015). Effect of maturity stage at harvest on antioxidant capacity and total phenolics in kiwifruits (Actinidia spp.) grown in Korea. Horticulture, Environment, and Biotechnology, 56, 841-848.
Leyva, R., Sánchez-Rodríguez, E., Ríos, J. J., Rubio-Wilhelmi, M. M., Romero, L., Ruiz, J. M. and Blasco, B. (2011). Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Science, 181(2), 195–202.
Lichtenthaler, H. K., and Buschmann, C. (2001). Extraction of photosynthetic tissues: chlorophylls and carotenoids. Current protocols in food analytical chemistry, 1(1), F4-2.
Makinen, S., Paakkonen, K., Hiltunen, R. and Holm, Y. (1999). Processing and use of basil in foodstuffs, beverages and in food preparation. Basil: the genus Ocimum. Netherlands: Harwood Academic Publishers.
Medrano-Macı´as, J., Leija-Martı´nez, P., Gonza´lez-Morales, S., Jua´rez-Maldonado, A. and Benavides-Mendoza, A. (2016). Use of iodine to biofortify and promote growth and stress tolerance in crops. Frontiers in Plant Science, 7: 1–20.
Mitchell, C.A., Dzakovich, M.P., Gomez, C., Lopez, R., Burr, J.F., Hernandez, R., Kubota, C., Currey, C.J., Meng, Q., Runkle, E.S., Bourget, C.M., Morrow, R.C. and Both, A.J. (2015). Light-emitting diodes in horticulture. In: Janick J (ed) Horticultural reviews, vol 43. Wiley, Hoboken.
Monostori, I., Heilmann, M., Kocsy, G., Rakszegi, M., Ahres, M., Altenbach, S.B., Szalai, G., Pál, M., Toldi, D., Simon-Sarkadi, L., Harnos, N., Galiba, G. and Darko, É. (2018). LED Lighting – Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity. Frontiers in Plant Science,9:605.
Nguyen, P.M. and Niemeyer, E.D. (2008). Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.). Journal of Agricultural and Food Chemistry, 56: 8685–91.
Padmaja, K. B. V. and Somasekharaiah, A. R. K. (1995). Inhibition of chlorophyll synthesis by selenium: involvement of lipoxygenase mediated lipid peroxidation and antioxidant enzymes. Photosynthesis, 31: 1 –7.
Purushothaman, B., Srinivasan, R.P., Sugandhi, N., Balu, R., Gimbun, Jolius, G. and Kumaran, SH. (2018). A Comprehensive Review on Ocimum basilicum. Journal of Natural Remedies, 18, 71-85.
Ramezani, S., Yousefshahi, B., Farrokhzad, Y., Ramezan, D., Zargar, M. and Pakina, E. (2023). Selenium and Iodine Biofortification Interacting with Supplementary Blue Light to Enhance the Growth Characteristics, Pigments, Trigonelline and Seed Yield of Fenugreek (Trigonella foenum-gracum L.). Agronomy, 13, 2070.
Rostami, M., Abaspour, H., SafipourAfshar, A. and Taheri, GH. (2021). The effect of selenium on growth and some physiological traits of basil plant under arsenic stress conditions. Journal of Plant Research (Journal of Iranian Biology) (Scientific), 35(4), 703-715. (In Farsi)
Simon, J.E., Morales, M.R., Phippen, W.B., Vieira, R.F. and Hao, Z. (1999). Basil: A source of aroma compounds and a popular culinary and ornamental herb. Perspectives on New crops and new uses. Alexandria: ASHS Press.
Singh, D., Basu, C., Meinhardt-Wollweber, M. and Roth, B. (2015). LEDs for energy efficient greenhouse lighting. Renewable and Sustainable Energy Reviews, 49, 139–147.
Skrypnik, L., Novikova, A. and Tokupova, E. (2019). Improvement of phenolic compounds, essential oil content and antioxidant properties of sweet basil (Ocimum basilicum L.) depending on type and concentration of selenium application. Plants, 8(11):458.
Smoleń, S., Wierzbińska, J., Sady, W., Kołton, A., Wiszniewska, A. and Liszka-Skoczylas, M. (2015). Iodine biofortification with additional application of salicylic acid affects yield and selected parameters of chemical composition of tomato. fruits (Solanum lycopersicum L.). Scientia Horticulturae, 188: 89–96.
Srivastava, M., Q. Ma, L., Rathinasabapathi, B. and Srivastava, P. (2009). Effects of selenium on arsenic uptake in arsenic hyperaccumulator Pteris vittata L. Bioresource Technology, 100(3): 1115-1121.
Suppakul, P., Miltz, J., Sonneveld, K. and Bigger, S.W. (2003). Antimicrobial properties of basil and its possible application in food packaging. Journal of Agricultural and Food Chemistry, 51: 3197–207.
Taulavuori, K., Hyoky, V., Oksanen, J., Taulavuori, E. and Julkunen-Tiitto, R. (2016). Species-specific differences in synthesis of flavonoids and phenolic acids under increasing periods of enhanced blue light. Environmental and Experimental Botany, 121: 145- 150.
Wallace, C. and Both, A.J. (2016). Evaluating operating characteristics of light sources for horticultural applications. Acta Horticulturae, 1134:435–443.
Wu, M.C., Hou, C.Y., Jiang, C.M., Wang, Y.T., Wang, C.Y., Chen, H.H. and Chang, H.M. (2007). A novel approach of LED light radiation improves the antioxidant activity of pea seedling. Food Chemistry, 101: 1753-1758.
Yeh, N. and Chung, J. P. (2009). High-brightness LEDs-energy efficient lighting sources and their potential in indoor plant cultivation. Renewable and Sustainable Energy Reviews, 13, 2175–2180.