رتبه بندی اعتباری مشتریان حقوقی بانک پارسیان
محورهای موضوعی : اقتصاد کار و جمعیت
کلید واژه: اعتبار سنجی, ریسک اعتباری, رگرسیون لاجیت وپروبیت, شبکه عصبی GMDH,
چکیده مقاله :
این مقاله با هدف مدلسازی سنجش ریسک اعتباری و اعتبارسنجی مشتریان در بانک پارسیان به روش رگرسیون لاجیت وپروبیت و مدل شبکههای عصبی هوشمند GMDH انجام میشود. بدین منظور اطلاعات و دادههای مالی و کیفی یک نمونه تصادفی 400 تایی از مشتریان که تسهیلات دریافت نموده اند مورد بررسی قرار میگیرد. این حجم نمونه از مشتریان دارای حساب منتهی به سال 1388 انتخاب شدهاند. در این مقاله پس از بررسی پروندههای اعتباری هر یک از مشتریان، 11 متغیر توضیح دهنده مورد ارزیابی قرار میگیرد. نتایج مقاله ضمن دلالت بر تأیید نظریههای اقتصادی و مالی نشان میدهد که عملکرد پیش بینی الگوی شبکه عصبی (درصد پیش بینیهای صحیح آن) به مراتب بهتر از الگوهای اقتصاد سنجی متعارف لاجیت و پروبیت است و در زمینه عوامل مؤثر بر ریسک اعتباری نشان میدهد که از بین متغیرهای مذکور، نوع وثیقه و نسبت بدهی دارای بیشترین اثر بر متغیر احتمال نکول میباشند. همچنین سابقه همکاری، نسبت جاری، نسبت آنی و نسبت مالکانه دارای اثر معمولی و سایر متغیرها کم اثر هستند.
In this research we are going to develop a model for evaluating the credit risk and credit ranking by customers in Parsian Bank by the help of the Logit and Probit regression and GMDH neural network methods. This model will be based on the qualitative and financial data a random sample of 400 customers receiving credit facilities. After analysis the credit files of each customers, we identified 11 explanatory variables including qualitative and financial aspects as follows: the type of security the type of the workplace owner ship, cooperation background, capital, current ratio, quick ratio, the ratio of current assent to total assents total asset turn over, turnover, current capital turnover, dept ratio an stock holder equity ratio that have significant impart on credit risk. The finding of the study corroborate the economic and financial theories of affection factors influencing credit risk, indicate that neural network model produce mare efficient and precise results than the other popular economic models like Logit and Probit. Also, a money explanatory variables, the type of collateral and dept ratio have the most effect, cooperation background, current ratio, stock holder equity have usual effect and the rest variables are less affection.
- منابع و مآخذ
- احمدیزاده، کوروش، (1385): "لزوم تاسیس مراکز اعتبارسنجی و رتبه بندی"، فصلنامه حسابرس، شماره34
- حسینی، پویا،(1387):"عوامل موثر بر ریسک اعتباری مشتریان حقوقی بانک (مطالعه موردی بانک پارسیان)"، پایان نامه کارشناسی ارشد دانشگاه آزاد اسلامی واحد علوم و تحقیقات
- خداوردی، امید (1388): "امتیازدهی ریسک اعتباری بیمه شدگان با استفاده از روشهای هوشمند (مطالعه موردی در یک مؤسسه اعتبار صادراتی)"، پایان نامه کارشناسی ارشد دانشگاه تهران
- دهقان،محمد،(1384): "بررسی تاثیر بی ثباتی درآمدهای ارزی بر سرمایه گذاری: مورد ایران(1338-1378)"،دانشگاه آزاد اسلامی شیراز
- رویین تن، پونه،(1384): " بررسی عوامل موثر بر ریسک اعتباری مشتریان حقوقی بانک "(مطالعه موردی بانک کشاورزی)، پایان نامه کارشناسی ارشد دانشگاه شهید بهشتی.
- سلیمانی کیا، فاطمه(1386): "مدل سازی و پیش بینی قیمت بنزین با استفاده از شبکه عصبی GMDH "، پایان نامه کارشناسی ارشد، دانشکده اقتصاد دانشگاه تهران.
- عبده تبریزی، حسین، میثم رادیور، (1388): «اندازه گیری و مدیریت ریسک بازار: رویکرد ارزش در معرض ریسک»، نشر پیشبرد
- فرد حریری، علیرضا، (1387): " مدلسازی ریسک و رتبهبندی اعتباری مشتریان حقوقی بانک رفاه کارگران"، پایان نامه کارشناسی ارشد دانشگاه تهران.
- کشاورز حداد، غلامرضا، حسین آیتی گازار (1386): "مقایسه کارکرد مدل لاجیت و روش درختهای طبقهبندی و رگرسیونی در فرایند اعتبار سنجی مشتریان حقیقی بانک در اعطای تسهیلات(مطالعه موردی بانک مسکن)" فصلنامه پژوهشهای اقتصادی- سال هفتم- شماره چهارم، صص71-97
- گجراتی، دامودار، ترجمه: حمید ابریشمی، (1385): "مبانی اقتصادسنجی"، انتشارات دانشگاه تهران
- مدرس، احمد و سید مرتضی ذکاوت ، (1386)، "مدلهای ریسک اعتباری مشتریان بانک"، (مطالعه موردی)، فصلنامه حسابرس، شماره 19
- منصوری، علی، (1382): "طراحی و تبیین مدل ریاضی تخصیص تسهیلات بانکی رویکرد مدلهای کلاسیک و شبکههای عصبی"، رساله دکترا دانشگاه تربیت مدرس
- Altman EL,(1994), “Corporate distress diagnosis: Comparisons using Linear Discriminant analysis and neural network (the Italian Experience)”, Journal of Banking and Finance , Volume 18, Issue 3, pages 505-529
- Amanifard, N. Nariman-Zadeh, M. Borji, A. Khalkhali and A. Habibdoust,(2008), Modelling and Pareto optimization of heat transfer and flow coefficients in microchannels using GMDH type neural networks and genetic algorithms, Energy Conversion and Management, Vol. 49, Issue 2, February, pp.311-325.
- Anastasakis, L., Mort, N., (2001), “The Development of Self-Organization Techniques in Modeling: A Review of The Group Method of Data Handling (GMDH)”, Department of Automatic Control & Systems Engineering The University of Sheffield, Mappin St, Sheffield, Research Report No. 813
- Atashkari, N. Nariman-Zadeh, M. Gölcü, A. Khalkhali and A. Jamali, (2007) “Modelling and multi-objective optimization of a variable valve-timing spark-ignition engine using polynomial neural networks and evolutionary algorithms”, Energy Conversion and Management, Vo. 48, Issue 3, March, pp.1029-1041.
- Chien-Huiyang , Mou-Yuanlia, Pin-Lunn Chen, Mei-Ting Huang,Chun-Wei Huang,Jia-Siang Huang ,Jui-Bin Chang, (2009) “Constracting Finantial Distress Prediction Model ; Using Group Method OF Data Handlind Technique”. Department of Business Administration, Yuanpei University, Hsinchu, Taiwan 30015, ROC
- Coats PK, Fant LF,(1993) “Recognizing financial distress Patterns using a neural network tool”. Financial Management,Vol.23, Issue3, Pages 55-142
- David West.(2000) “Neural network credit scoring”, Computer and Operation Research, Volume 27, Issues 11-12, Pages 1131-1152
- Desai VS,Crook JN, Overstreet GA,(1996), “A comparison of neural network and linear scoring models in credit union environment”, European Journal of Operational Research, Volume 95, Issues 1, Pages 24-37
- Farlow, S.J., (1984), “Self-organizing methods in modeling, GMDH type algorithms”, New York and Basel, Marcel Dekker, Inc, Textbooks and Monographs, Volume 54 (Fifty-Four)
- Hitchins J Hogg M and Mallett D (2001) Banking: A Regulatory Accounting and Auditing Guide (The Institute of Chartered Accountants)
- Hiassat, M, N. Mort, 2004, An evolutionary method for term selection in the group method of data handling In R.G. Aykroyd, S. Barber, & K.V. Mardia (Eds.), Bioinformatics, Images, and Wavelets, pp. 130-133. Department of Statistics, University of Leeds
- Hussein Abdou,John Pointon, Ahmed El-Masry, (2007), “Neural nets versus conventional techniques in credit scoring in Egyptian banking”, Expert system with applications, Volume 35, Issue 3,Pages 1275-1292
- Ivakhnenko A.G and Ivakhnenko, G.A., (1995), “The review of problems solvable by algorithms of the group method of data handling (GMDH)”, Pattern Recognition and Image Analysis, Vol.5, No.4, pp. 527-535.
- Ivakhnenko G., (2000(b)) Problems of further development of the group method of data handling algorithms. Pattern Recognition and Image Analysis, 187-194.
- Ivakhnenko, A. G., (1968) The group method of data handling; a rival of the method of stochastic approximation, Soviet Automatic Control, 13(3), 43-55
- Jamali, A., Nariman-zadeh, N., Atashkari, K., (2006), “Inverse Modelling of Multi-objective Thermodynamically Optimized Turbojet Engines using GMDH and GA”, Engineering Optimization, Volume 37, Issue 5 , pages 437 - 462
- Lacher RC, Coats PK, Sharma S, Fant LF,(1995) “A neural network for classifying the financial health of a firm”, European Journal of Operational research, Volume 85, Issues 1, Pages 53-65
- Mu-Chen Chen, Shih-Hsien Huang. (2003), “Credit scoring and rejected instances reassigning through evolutionary computation techniques”, Expert system with applications, Volume 24, Issue 4, Pages 433-441
- Nariman-Zadeh, N.; Darvizeh, A.; Ahmad-Zadeh, G. R., (2003), “Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modeling and prediction of the explosive cutting process”, Journal of Engineering manufacture Proceedings of the I MECH E Part B, Vol.217, pp.779 - 790.
- Piramutha S,(1998), “financial credit risk evaluation with neural and neurofuzzy systems”. European Journal of Operational Research, Volume 112, Issue 2, Pages 310-321
- Sabzevari H., Soleymani M., Noorbakhsh E.(2006), (n.d.) A Comparison between Statistical and Data Mining Methods for Credit Scoring in Case of Limited Available Data.
- Salchenberger LM, Cinar EM, Lash NA, (1992), “Neural networks: a new tool for predicting thrift failures”. Decision Sciences, Volume 23, Issue 4, pages 899–916
- Tam KY, Kiang MY. (1992), “Managerial application of neural networks: the case of bank failure predictions”, Management Science, Vol. 38, No.7, pp.926-947
- Thomas L. C. A. (2000), “Survey of Credit and Behavioural Scoring: Forecasting Financial Risk of Lending to Consumers”, International Journal of Forecasting Volume 16, Issue 2, pages 149-172
- Tian-Shyug Leea, Chih-Chou Chiu, Chi-Jie Lu, I-Fei Chen. (2002), “ Credit scoring using the Hybrid Neural Discriminant technique”, Expert System Applications, Volume 23, Issue 3, 1, Pages 245-254
Vasechkina, E.F. and Yarin, V.D., (2001), “Evolving polynomial neural network by means of genetic algorithms: some application examples”, Complexity