مشارکت زنان متاهل در بازار کار ایران: مدلسازی غیرخطی تابع لاجیت
محورهای موضوعی : اقتصاد کار و جمعیتزینب سارانی 1 * , بهروز کشته گر 2 , غلامرضا کشاورز حداد 3
1 - دکتری اقتصاد
2 - استادیار اقتصاد دانشگاه زابل
3 - دانشیار دانشگاه صنعتی شریف
کلید واژه: روش حداکثر درستنمایی, مدل لاجیت, مدلسازی مشارکت زنان, مدل ریاضی غیرخطی,
چکیده مقاله :
در این مقاله یک تابع جمعی غیرخطی لاجیت برای مدلسازی معادله مشارکت زنان ایران مطابق با دادههای هزینه – درآمد خانوار سال 1388 ارایه شده است. در مدل لاجیت غیرخطی از تابع ریاضی پیوسته مانند توانی، نمایی، چند جملهای و لگاریتمی برای متغیرهایی همچون درآمد شوهر، تحصیلات، سن زن، ثروت، تعداد بچه بالای شش سال و زیر شش سال استفاده شده است. معادله غیرخطی مشارکت زنان متاهل بر اساس معیارهای مقایسه اقتصادسنجی از جمله آزمون وایت و آماره ضریب لاگرانژ با مدلهای لاجیت پارامتریک و ناپارامتریک مقایسه شده است. نتایج مدلسازی نشان میدهد که انتخاب تابع ریاضی مناسب میتواند انطعافپذیری مناسبی را در مدلسازی دودویی فراهم کند. به طوری که موجب افزایش توانمندی و کاهش خطا مدلسازی نسبت به مدلهای لاجیت پارامتریک و ناپارامتریک شده است. همچنین این رویه مدلسازی همانند مدل ناپارامتریک همسانی واریانس داشته اما، خطای مدلسازی کمتری را نتیجه داده است.
Abstract In the present paper, logit non-linear massive model is presented by using the maximum likelihood method for binary model of Iranian female labor participation based on income-expenditure data of the households in 2006. In logit non-linear model, a continuous mathematical function like power, exponential, polynomial and logarithmic are used for independent variables such as husband income, education, woman age, wealth and the number of children above and under 6 years old. Non-linear equation of married women participation based on econometric comparison standards like White Test and Lagrange coefficient statistics is compared with parametric and non-parametric Logit models. The results of modeling represent that the selection of an appropriate mathematical function can provide a suitable flexibility in binary modeling and so increase the ability and decrease the errors of the modeling compared to parametric and non-parametric logit models. Also, this kind of modeling approach has a variance homogeneity as well as non-parametric model, but here there is less error in modeling.
منابع
- سالنامه آماری کشور سال 1388، مرکز آمار ایران
- کشاورز حداد، غلامرضا، باقری قنبرآبادی، مرتضی (1390). تحلیل احتمال مشارکت زنان شهری و روستایی ایران در بازار کار با استفاده از روش های اقتصادسنجی پارامتریک و ناپارامتریک. مجلهتحقیقاتاقتصادی، 97: 151-174.
- Assaad, R., & El-Hamidi, F. (2002). Female labor supply in Egypt: Participation and Hours of Work. In Human Capital: Population economics in The Middle East. Ismail Sirageldin (Ed.). London: I.B. Tauris
- Bera, A. K., & Bilias, Y. (2001). Rao’s Score, Neyman’s C (α) and Silvey’s LM tests: An Essay on Historical Developments and Some New Results. Journal of StatisticalPlanning and Inference, 97:9-44.
- Berulava, G., Chikava, G., 2012. The determinants of household labor supply in Georgia, France and Romania: a comparative study. Eurasian Journal of Business and Economics, 5 (9), 141-164.
- Bianco, A.M., & Martínez, E. (2009). Robust testing in the logistic regression model. Computational Statistics and Data Analysis, 53: 4095-4105.
- Chiappori, P.A. (1988). Rational household labor supply. Econometrica, 56: 63-89.
- Chiappori, P.A. (1992). Collective labor supply and welfare. Journal of Political Economy, 100: 437-67.
- Cynthia, B.L., & Beth, T.N. (1979). Theeconomics of six differentials. New York, Columbia University Press.
- Donni O., & Moreau, N. (2007). Collective labor supply: A single-equation model and some evidence from French data. The Journal of Human Resources, XLII: 214-246.
- Durbin J., & Watson, G.S., (1971). Testing for serial correlation in least squares regression III. Biometrika 58, 1–19.
- Fortin, B., & Lacroix, G. (1997). A test of neoclassical and collective models of household labor supply. Economic Journal, 107: 933-955.
- Frolich, M. (2006). Non-parametric regression for binary dependent variables.Econometrics Journal, 9: 511–540.
- García, J., & María J. S. (2002). Female Labor Supply in Spain: The Importance of Behavioural Assumptions and Unobserved Heterogeneity Specification. Department of Pampeu Fabra.
- Gerfin, M. (1996) .Parametric and semi-parametric estimation of the binary response model of labor market participation. Journal of Applied Econometrics, 11:321–39.
- Gong, X., & van Soest, A. (2000). Family structure and female labour supply in Mexico City. IZA Discussion, Paper No: 214.
- Killingworth, M.R., & Heckman, J. (1986). Female labor supply: a survey, chapter 2 in orley Ashenfelter and Richard Layard eds, Handbook of Labor Economics. Vol. 1: New York: Elsevier Science Publishers Bv, 103-204.
- Leckner, M. (1991). Testinglogit models in practice. Empirical Economics, 16(2), 177-198.
- Maalouf, M., & Trafalis, T.B. (2011). Robust weighted kernel logistic regression in imbalanced and rare events data. Computational Statistics and Data Analysis, 55:168-183
- Mincer, J. (1962). Labor Force Participation of Married Women: A Study of Labor Supply. Aspects of Labor Economics, Princeton, N.J.: National Bureau of Economic Research, Princeton University Press, 63-105.
- Nawata, K. (1995). Estimation of the sample-selection models by the maximum likelihood estimator and Heckman’s two-step estimator. Economic Letter, 45:33–40.
- Racine, J., & Li, Q. (2004). Nonparametric estimation of regression functions with both categorical and continuous data. Journal of Econometrics, 119: 99–130.
- White, H. (1982). Maximum likelihood estimation of misspecified Models. Econometrica, 50:1-25
- Willmott, C.J., & Matsuura, K. (1998). On the use of dimensioned measures of error to evaluate the performance of spatial interpolators. International Journal of Geographical, 86: 121-136.