مروری کوتاه بر کاربرد سلولز به عنوان یک کاتالیزگر کارآمد و موثر در واکنشهای آلی
محورهای موضوعی : سایرعبدالحمید دهقانی 1 * , میلاد قزلسفلو 2 , یوسف دلشاد 3 , سهیل دهقانی سیاهکی 4
1 - گروه شیمی آلی، دانشکده شیمی، دانشگاه کاشان، کاشان، ایران
2 - گروه شیمی آلی، دانشکده شیمی، دانشگاه کاشان، کاشان، ایران
3 - گروه شیمی آلی، دانشکده شیمی، دانشگاه کاشان، کاشان، ایران
4 - گروه شیمی آلی، دانشکده شیمی، دانشگاه کاشان، کاشان، ایران
کلید واژه: سلولز, پلیمر زیستی, کاتالیزگر, واکنش های آلی,
چکیده مقاله :
تهیه مواد شیمیایی تجدیدپذیر و ارزشمند از منابع زیست توده تجدیدپذیر مانند سلولز، توجه جهانی را به منظور ایجاد جوامع پایدار جلب کرده است. سلولز فراوان¬ترین زیست¬توده غیرغذایی است و از اهمیت اقتصادی زیادی برخوردار است. برخلاف کاتالیزگرهای سنتی مشتق¬شده از منابع نفتی، سلولز مزایای متعددی از جمله تجدیدپذیری، زیست تخریب¬پذیری و سازگاری با اصول شیمی سبز را ارائه می¬دهد. استفاده از کاتالیزگر ناهمگن می¬تواند به پژوهشگران اجازه دهد تا فرآیندهای بی¬خطر محیطی را توسعه دهند. کاتالیزگرهای مبتنی بر سلولز فعالیت قابل توجهی را در طیف گسترده¬ای از واکنش¬ها از جمله هیدروژناسیون، اکسیداسیون و پلیمریزاسیون نشان داده¬اند. تطبیق¬پذیری آنها ناشی از توانایی آنها در تثبیت انواع نانوذرات فلزی است که به عنوان جایگاه های کاتالیزگری فعال عمل می¬کنند. تثبیت نانوذرات فلزی روی سلولز مزایای متعددی از جمله بهبود پایداری، جلوگیری از تجمع نانوذرات و افزایش قابلیت پخش¬شدن آنها را به همراه دارد. سلولز پتانسیل خود را برای ایجاد انقلابی شگرف در شیمی سبز نشان می¬دهد. بنابراین تطبیق پذیری، پایداری و ویژگی های قابل تنظیم سلولز آن را به یک کاتالیزگر ضروری برای آینده ای سبزتر تبدیل کرده است. هدف این بررسی، ارائه یک نمای کلی از کاربرد سلولز به عنوان کاتالیزگر در واکنش های آلی توسط پژوهشگران ایرانی است.
The production of renewable and valuable chemicals from renewable biomass sources such as cellulose has attracted global attention in order to create sustainable societies. Cellulose is the most abundant non-food biomass and is of great economic importance. Unlike traditional catalysts derived from petroleum sources, cellulose offers several advantages such as renewability, biodegradability and compatibility with the principles of green chemistry. The use of heterogeneous catalysis can allow researchers to develop environmentally safe processes. Cellulose-based catalysts have shown significant activity in a wide range of reactions including hydrogenation, oxidation and polymerization. Their versatility is due to their ability to support all kinds of metal nanoparticles that act as active catalysis sites. Stabilization of metal nanoparticles on cellulose brings several advantages, including improving stability, preventing the accumulation of nanoparticles, and increasing their dispersibility. Cellulose shows its potential to create a great revolution in green chemistry. Therefore, cellulose's versatility, sustainability, and tunable properties make it an essential catalyst for a greener future. The purpose of this review is to provide an overview of the use of cellulose as a catalyst in organic reactions by Iranian researchers.
1.
R.S. Riseh, M.G. Vazvani, M. Hassanisaadi, V.K.T hakur, Ind Crops Prod 208, 117904 (2024) 2.
S. Li, G. He, J. Huang, Curr Opin Colloid Interface 63, 101655 (2023) 3.
A. Prekob, V. Hajdu, G. Muránszky, B. Fiser, A. Sycheva, T. Ferenczi, L. Vanyorek, Mater. Today Chem 17, 100337 (2020) 4.
N. Chokesawatanakit, S. Thammasang, S. Phanthanawiboon, J.T. Knijnenburg, S. Theerakulpisut, K. Kamwilaisak, Int. J. Biol. Macromol 256, 128321 (2024) 5.
T.I. Gromovykh, M.A. Pigaleva, M.O. Gallyamov, I.P. Ivanenko, K. E. Ozerova, E.P. Kharitonova, O.I. Kiselyova, Carbohydr. Polym 237, 116140 (2020) 6.
J. Liu, H. Sixta, Y. Ogawa, M. Hummel, M. Sztucki, Y. Nishiyama, M. Burghammer, Carbohydr. Polym 324, 121512 (2024) 7.
J. Malešič, I. Kraševec, I. Kralj Cigić, Polym 13, 1990 (2021) 8.
A. Yamakawa, S. Suzuki, T. Oku, K. Enomoto, M. Ikeda, J. Rodrigue, S. Kitamura, Carbohydr. Polym 171, 129-135 (2017) 9.
P.L. Hurtado, A. Rouilly, V. Vandenbossche, C. Raynaud, Build Environ 96, 170-177 (2016) 10.
P.L. Nasatto, F. Pignon, J.L. Silveira, M. E.R. Duarte, M.D. Noseda, M. Rinaudo, Polym 7, 777-803 (2015) 11.
L. Pan, J. Du, Q. Yin, Y. Tao, P. Li, Int. J. Biol. Macromol 257, 128552 (2024) 12.
R. Blažic, K. Marušić, E. Vidović, Gels 9, 94 (2023) 13.
J. Mantovan, G.A.G. Giraldo, B.M. Marim, P.S. Garcia, A.M. Baron, S. Mali, Biomass Convers. Biorefin 1-12 (2021) 14.
M.M. Pérez-Madrigal, M.G. Edo, C. Alemán, Green Chem 18, 5930-5956 (2016) 15.
D. Zhao, Y. Zhu, W. Cheng, W. Chen, Y. Wu, H. Yu, Adv Mater 33, 2000619 (2021) 16.
J. Wei, G. Zhang, J. Dong, H. Wang, Y. Guo, X. Zhuo, Y. Li, ACS Sustain. Chem. Eng 6, 11335-11344 (2018) 17.
L.O. Mota, I.F. Gimenez, Rev. Virtual Quím 60, 2525-2542 (2022) 18.
A. Shrotri, H. Kobayashi, A. Fukuoka, Acc. Chem. Res 51, 761-768 (2018) 19.
L.E. Silva, Dos A.D.A. Santos, L. Torres, Z. McCaffrey, A. Klamczynski, G. Glenn, G.H.D. Tonoli, Carbohydr. Polym 252, 117165 (2021) 20.
J. Zhang, Q.I. Yingping, S.H.E.N Yongfeng, L.I. Hua, Mater. Sci 28, 60-67 (2022) 21.
Y. Li, J. Guo, M. Li, Y. Tang, V. Murugadoss, I. Seok, Y. Luo, ES food & agroforestry 4, 9-27 (2021) 22.
R. Yekta, R. Abedi-Firoozjah, S. Azimi Salim, A. Khezerlou, K. Abdolmaleki, Cellul 30, 9925-9953 (2023) 23.
T. Aziz, A. Farid, F. Haq, M. Kiran, A. Ullah, K. Zhang, R. Ullah, Polym 14, 3206 (2022) 24.
S. Eyley, W. Thielemans, Nanoscale 6, 7764-7779 (2014) 25.
S. Hokkanen, A. Bhatnagar, M. Sillanpää, Water Res 91, 156-173 (2016) 26.
K. Jedvert, T. Heinze, J. Polym. Eng 37, 845-860 (2017) 27.
A. Shrotri, H. Kobayashi, A. Fukuoka, ChemCatChem 8, 1059-1064 (2016) 28.
T. Aziz, A. Ullah, H. Fan, R. Ullah, F. Haq, F.U. Khan, J. Wei, J Polym Environ 29, 2062-2071(2021) 29.
K. Missoum, M.N. Belgacem, J. Bras, Mater 6, 1745-1766 (2013) 30.
J. Mantovan, G.A.G. Giraldo, B.M. Marim, P.S. Garcia, A.M. Baron, S. Mali, Biomass Convers. Biorefin 1-12 (2021) 31.
W. Zheng, L. Fan, Z. Meng, J. Zhou, D. Ye, W. Xu, J. Xu, Carbohydr. Polym 324, 121502 (2024) 32.
D. Trache, M.H. Hussin, M.M. Haafiz, V.K. Thakur, Nanoscale 9, 1763-1786 (2017) 33.
D.K.P.K. Lavanya, P.K. Kulkarni, M. Dixit, P.K. Raavi, L.N.V. Krishna, Int. J. Drug Dev. Res 2, 19-38 (2011) 34.
J. Gong, J. Li, J. Xu, Z. Xiang, L. Mo, RSC adv 7, 33486-33493 (2017) 35.
T. Heinze, O.A. El Seoud, A. Koschella, Cellulose derivatives: Synthesis, structure, and properties, (Springer, 2018) 36.
E.R. Keijsers, G. Yılmaz, J.E. Carbohydr van Dam, Polym 93, 9-21 (2013) 37.
M.A. Mohamed, W.N.W. Salleh, J. Jaafar, A.F. Ismail, M.Abd. Mutalib, S.M. Jamil, J. Appl. Polym. Sci 132, (2015) 38.
H.M. Ng, L.T. Sin, T.T. Tee, S.T. Bee, D. Hui, C.Y. Low, A.R. Rahmat, Compos. B. Eng. 75, 176-200 (2015) 39.
J. Safari, S.H. Banitaba, S.D. Khalili, J Mol Catal A Chem 335, 46-50 (2011) 40.
A. Maleki, M. Kamalzare, Catal. Commun 53, 67-71 (2014) 41.
K. Rad-Moghadam, N. Dehghan, J Mol Catal A Chem 392, 97-104 (2014) 42.
A. Shaabani, H. Nosrati, M. Seyyedhamzeh, Res. Chem. Intermed 41, 3719-3727 (2015) 43.
A. Maleki, H. Movahed, R. Paydar, RSC adv 6, 13657-13665 (2016) 44.
S. Azad, B.B.F. Mirjalili, RSC adv 6, 96928-96934 (2016) 45.
S. Sabaqian, F. Nemati, H.T. Nahzomi, M.M. Heravi, Carbohydr. Polym 177, 165-177 (2017) 46.
B.B.F. Mirjalili, A. Bamoniri, S. Azad, J. Iran. Chem. Soc 14, 47-55 (2017) 47.
A. Maleki, P. Ravaghi, H. Movahed, Nanomicro Lett 13, 591-594 (2018) 48.
B.B.F. Mirjalili, F. Aref, Res. Chem. Intermed 44, 4519-4531 (2018) 49.
A. Maleki, V. Eskandarpour, J. Rahimi, N. Hamidi, Carbohydr. Polym 208, 251-260 (2019) 50.
N. Safajoo, B.B.F. Mirjalili, A. Bamoniri, RSC adv 9, 1278-1283 (2019) 51.
B.B.F. Mirjalili, M. Imani, J. Chin. Chem. Soc 66, 1542-1549 (2019) 52.
M. Jokar, H. Naeimi, G. Nabi Bidhendi, Appl. Organomet. Chem 35, 6266 (2021) 53.
N. Safajoo, B.B.F. Mirjalili, A. Bamoniri, Polycycl. Aromat. Compd 41, 1241-1248 (2021) 54.
S. Azad, B.B.F. Mirjalili, A. Bamoniri, J. Org. Chem. Res 7, 23-31 (2021) 55.
M. Jokar, H. Naeimi, G. Nabi Bidhendi, Polycycl. Aromat. Compd 42, 4994-5005 (2022) 56.
S.S. Hoseinikhah, B.F. Mirjalili, N. Salehi, A. Bamoniri, Sci. Iran 29, 1301-1307 (2022) 57.
M.A.M. Tabaei, A. Bamoniri, B.B.F. Mirjalili, J. Iran. Chem. Soc 19, 2679-2691 (2022)