کاربرد فناوری نانو در انتقال دارو از راه بینی به مغز در درمان آلزایمر: مروری بر پیشرفتهای اخیر، فرصتها و چالشها
محورهای موضوعی : کاربرد نانوساختارها
طاهره نوایی دیوا
1
*
,
مائده رضاپور
2
1 - گروه شيمي، واحد سوادكوه، دانشگاه آزاد اسلامي، سوادكوه، ايران.
2 - گروه شيمي، واحد آیت الله آملی، دانشگاه آزاد اسلامي، آمل، ايران.
کلید واژه: نانوفناوری, بیماری آلزایمر, نانوفرمولاسیونهای دارویی, سد خونی-مغزی, نانوذرات فلزی. ,
چکیده مقاله :
بیماری آلزایمر یکی از شایعترین اختلالات نورودژنراتیو است که درمان مؤثر آن به دلیل وجود سد خونی-مغزی، چالشهای قابلتوجهی دارد. مسیر بینی به مغز به عنوان یک راه نوین و غیر تهاجمی، امکان عبور مستقیم دارو از طریق اپیتلیوم بینی به سیستم عصبی مرکزی را فراهم میسازد. در این راستا، نانوفرمولاسیونهای دارویی بهویژه با ویژگیهای هوشمند و هدفمند، نقش بسزایی در بهبود انتقال دارو ایفا میکنند. پلیمرهای کاتیونی نظیر کیتوزان، نانوذرات پلیمری، نانوژلها، لیپوزومها و نانوذرات لیپیدی جامد از جمله سامانههای موفق برای این مسیر هستند. اصلاح سطح نانوذرات با لیگاندهایی مانند آپوترانسفرین و لاکتوفرین، امکان هدفگیری نورونهای خاص را افزایش میدهد. همچنین نانوحاملهای پاسخگو به pH، آنزیم یا دما، رهایش کنترلشده و اختصاصی دارو در محیط پاتولوژیک مغز را ممکن میسازند. این سامانهها در تحویل داروهای ضدآمیلوئید، مهارکنندههای کیناز، آنتیاکسیدانها، فاکتورهای نوروتروفیک و siRNA مؤثر بودهاند. آزمونهای سمیت، نفوذپذیری، رهایش، فارماکوکینتیک و آزمونهای رفتاری، اثربخشی این فرمولاسیونها را در مدلهای آلزایمر تأیید کردهاند. در کنار این پیشرفتها، چالشهایی نظیر پایداری فرمولاسیون، تفاوت مدلهای حیوانی با انسان، و پاکسازی سریع مخاطی باقی مانده است. با این حال، تلفیق نانوفناوری با مدلهای ارگان-روی-چیپ و هوش مصنوعی، افقهای نوینی برای درمان هدفمند و ایمن آلزایمر از مسیر بینی به مغز میگشاید.
Alzheimer’s disease is one of the most prevalent neurodegenerative disorders, with effective treatment facing significant challenges due to the blood–brain barrier. The nose-to-brain route offers a novel, non-invasive pathway enabling direct drug transport across the nasal epithelium into the central nervous system. In this context, smart and targeted pharmaceutical nanocarriers play a pivotal role in enhancing drug delivery efficiency. Cationic polymers such as chitosan, polymeric nanoparticles, nanogels, liposomes, and solid lipid nanoparticles are among the successful systems utilized in this approach. Surface functionalization of nanoparticles with ligands like apotransferrin and lactoferrin enhances specific neuronal targeting. Stimuli-responsive nanocarriers—reactive to pH, enzymes, or temperature—facilitate controlled and site-specific drug release within the pathological brain environment. These systems have proven effective in delivering anti-amyloid drugs, kinase inhibitors, antioxidants, neurotrophic factors, and siRNA. Toxicity, permeability, release kinetics, pharmacokinetics, and behavioral assays have validated their therapeutic potential in Alzheimer’s models. Nevertheless, formulation stability, inter-species translational gaps, and rapid mucosal clearance remain significant obstacles. Integration of nanotechnology with organ-on-a-chip platforms and artificial intelligence opens new horizons for safer and more precise nose-to-brain therapies targeting Alzheimer’s disease.
1. D. Rosenblum, N. Joshi, W. Tao, J.M. Karp, D. Peer, Nat. Commun., 9, 1410 [2018).
2. A. Ahmadi, M. Salehpour, Z. Saadati, Chem. NanoChem. J., 3[11), [2024).
3. S. Mura, J. Nicolas, P. Couvreur, Nat. Mater., 12, 991–1003 [2013).
4. M. Karimi, A. Ghasemi, P.S. Zangabad, R. Rahighi, S.M. Basri, H. Mirshekari, M. Amiri, Z.S. Pishabad, A. Aslani, M. Bozorgomid, D. Ghosh, Chem. Soc. Rev., 45, 1457–1501 [2016).
5. F. Danhier, O. Feron, V. Préat, J. Control. Release, 148, 135–146 [2010).
6. D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nano-Enabled Med. Appl., [vol/issue not specified], 61–91 [2020].
7. H.W. Querfurth, F.M. LaFerla, N. Engl. J. Med., 362, 329–344 [2010).
8. J. Hardy, D.J. Selkoe, Science, 297, 353–356 [2002).
9. D.J. Selkoe, J. Hardy, EMBO Mol. Med., 8, 595–608 [2016).
10. E.M. Reiman, G.M. McKhann, M.S. Albert, R.A. Sperling, R.C. Petersen, D. Blacker, J. Clin. Psychiatry, 72, 3271 [2011). 11. World Health Organization, Dementia Fact Sheet, Geneva, https://www.who.int/news-room/fact-sheets/detail/dementia [2021).
12. Alzheimer’s Disease International, World Alzheimer Report 2023: Reducing dementia risk – never too early, never too late, Alzheimer’s Disease International, London [2023].Available from: https://www.alzint.org/resource/world-alzheimer-report-2023.
13. Alzheimer’s Association, Alzheimers Dement., 20, 700–789 [2024].Available from: https://www.alz.org/facts.
14. B. De Strooper, E. Karran, Nat. Rev. Neurosci., 17, 545–560 [2016].Available from: https://doi.org/10.1038/nrn.2016.66.
15. J. Cummings, L. Apostolova, G.D. Rabinovici, A. Atri, P. Aisen, S. Greenberg, S. Hendrix, D. Selkoe, M. Weiner, R.C. Petersen, S. Salloway, J. Prev. Alzheimers Dis., 10, 362–377 [2023).
16. M.A. Mintun, A.C. Lo, C.D. Evans, A.M. Wessels, P.A. Ardayfio, S.W. Andersen et al., N. Engl. J. Med., 388, 9–21 [2023).
17. R.A. Sperling, C.H. van Dyck, C.J. Swanson, J. Karel, J. O’Gorman, M. Kanekiyo et al., N. Engl. J. Med., 388, 32–44 [2023).
18. J.R. Sims, J.A. Zimmer, C.D. Evans, M. Lu, P.A. Ardayfio, J.D. Sparks et al., J. Alzheimers Dis. Rep., 7, 15–23 [2023).
19. Institute for Clinical and Economic Review, Lecanemab for Alzheimer’s disease: effectiveness and value [2023].Available from: https://www.icer.org.
20. J. Birks, Cochrane Database Syst. Rev., 1, CD005593 [2006).
21. M.W. Jann, Clin. Ther., 26, 1380–1392 [2004).
22. W.M. Pardridge, NeuroRx, 2, 3–14 [2005].
23. J.J. Lochhead, R.G. Thorne, Adv. Drug Deliv. Rev., 64, 614–628 [2012).
24. A. Pires, A. Fortuna, G. Alves, A. Falcão, J. Pharm. Pharm. Sci., 12, 288–311 [2009).
25. R.G. Thorne, W.H. Frey, Clin. Pharmacokinet., 40, 907–946 [2001).
26. S.V. Dhuria, L.R. Hanson, W.H. Frey, J. Pharm. Sci., 99, 1654–1673 [2010).
27. A. Bonaccorso, T. Musumeci, M.F. Serapide, R. Pellitteri, C. Carbone, Pharmaceutics, 13, 1170 [2021).
28. H.K. Patel et al., Mol. Pharm., 20, 120–134 [2023].
29. P. Kumari et al., Colloids Surf. B Biointerfaces, 75, 1–18 [2010].
30. J. Kreuter et al., Adv. Drug Deliv. Rev., 56, 153–158 [2003].
31. F. Alexis et al., Mol. Pharm., 5, 505–515 [2008].
32. K.S. Soppimath et al., J. Control Release, 70, 1–20 [2001].
33. B. Wilson et al., J. Pharm. Sci., 97, 3104–3111 [2008].
34. R. Kumar et al., Drug Dev. Ind. Pharm., 41, 1440–1447 [2015].
35. G. Tiwari et al., Int. J. Pharm. Investig., 2, 2–11 [2012].
36. Y. Huang et al., Adv. Drug Deliv. Rev., 63, 740–755 [2011].
37. A. Akbarzadeh et al., Nanoscale Res. Lett., 8, 102 [2013].
38. G. Bozzuto, A. Molinari, Int. J. Nanomedicine, 10, 975–999 [2015].
39. N. Limpeanchob et al., Biol. Pharm. Bull., 32, 1629–1634 [2009].
40. M.M. Patel, G.C. Patel, R.B. Patel, J.K. Patel, K.N. Patel, J. Pharm. Sci., 99, 4217–4229 [2010].
41. V. Kakkar, A.K. Mishra, K. Chuttani, I.P. Kaur, Nanomedicine, 6, 419–429 [2011].
42. A.K. Jain, S.K. Jain, N. Ganesh, J. Barve, A.M. Beg, Nanomedicine, 7, 635–643 [2012].
43. J.U. Junghanns, R.H. Müller, Int. J. Nanomedicine, 3, 295–309 [2008).
44. K. Patel, A. Patil, M. Mehta, V. Gota, P. Vavia, Nanomedicine, 9, 259–271 [2014).
45. Y.J. Tsai, H. Pan, C.M. Hung, P.T. Hou, Y.C. Li, Y.J. Lee et al., J. Nanobiotechnol., 9, 10 [2011].
46. L. Rizzello, P.P. Pompa, Chem. Soc. Rev., 43, 1501–1518 [2014).
47. P. Anand, A.B. Kunnumakkara, R.A. Newman, B.B. Aggarwal, CNS Neurol. Disord. Drug Targets, 11, 627–642 [2012].
48. R. Kumar, A. Kulkarni, D.K. Nagesha, S. Sridhar, ACS Biomater. Sci. Eng., 6, 602–617 [2020).
49. J.K. Oh, J.M. Park, Adv. Drug Deliv. Rev., 61, 899–914 [2009).
50. S.V. Vinogradov, E.V. Batrakova, A.V. Kabanov, Bioconjug. Chem., 13, 548–553 [2002).
51. S. Jin, K. Ye, Biomaterials, 197, 1–2 [2019).
52. C. Dende, P.P. Mehta, V. Venkatasubramanian, R. Govindarajan, Front. Aging Neurosci., 9, 72 [2017).
53. S. Mourtas, A.N. Lazar, P. Gkeka et al., J. Alzheimers Dis., 20, 411–422 [2011).
54. A. Rajput, A. Jain, P. Mishra, Drug Dev. Ind. Pharm., 46, 427–439 [2020).
55. Z. Yang, Y. Zhang, L. Wang et al., Int. J. Pharm., 455, 110–116 [2013).
56. L. Zhang, Y. Zheng, A.H. Chow et al., CNS Neurosci. Ther., 24, 117–124 [2018).
57. F. Shakeel, S. Shafiq, N. Haq, AAPS PharmSciTech, 15, 456–464 [2014].
58. B. Gaba, M. Fazil, S. Khan et al., Drug Dev. Ind. Pharm., 47, 503–513 [2021].
59. R. Kumar, A. Singh, N. Garg et al., Drug Dev. Ind. Pharm., 42, 194–203 [2016].
60. Y. Kwon, Drug Deliv., 10, 165–172 [2003].
61. M. Sun, X. Su, B. Ding et al., J. Control Release, 192, 1–9 [2014).
62. M. Binda et al., Int. J. Pharm., 586, 119555 [2020).
63. D.A. Tomalia, L.A. Reyna, S. Svenson, Chem. Rev., 105, 1157–1171 [2005).
64. R.M. Kannan, E. Nance, S. Kannan, D.A. Tomalia, J. Intern. Med., 276, 579–617 [2012).
65. A. Khan, M. Junaid, A.C. Kaushik, A. Ali, S.S. Ali, A. Mehmood et al., Mol. Pharm., 15, 1994–2007 [2018).
66. M. Ghezelsofloo, A. Dehghani, S. Ghasemi, Chem. NanoChem. J., 1, 54–68 [2022].[Persian].
67. A. Mistry, S. Stolnik, L. Illum, Int. J. Pharm., 604, 120743 [2021).
68. L. Illum, Eur. J. Pharm. Sci., 11, 1–18 [2000].
69. K.K. Jain et al., Drug Deliv. Transl. Res., 12, 1000–1015 [2022).
70. A. Beloqui, M.A. Solinís, A. Rodríguez-Gascón, A.J. Almeida, V. Préat, Nanomedicine, 12, 143–161 [2016].
71. Y. Lu, A.A. Aimetti, R. Langer, Z. Gu, Nat. Rev. Mater., 1, 160–178 [2020].
72. Y.D. Kwon, J. Choo, B. Kim, I. Yoon, Y. Gwon, S. Min, NeurIPS, arXiv [2020).
73. S. Yadav et al., J. Drug Deliv. Sci. Technol., 67, 102993 [2022).
74. A. Borreca, V. Latina, Front. Aging Neurosci., 12, 272 [2020).
75. M.T. Heneka, M.J. Carson, J.E. Khoury, G.E. Landreth, F. Brosseron, D.L. Feinstein et al., Lancet Neurol., 14, 388–405 [2015).
76. A. Anand et al., Drug Discov. Today, 24, 785–796 [2019).
77. P.T. Francis et al., J. Neurol. Neurosurg. Psychiatry, 66, 137–147 [1999).
78. C. Saraiva, C. Praça, R. Ferreira, T. Santos, L. Ferreira, L. Bernardino, J. Control Release, 235, 34–47 [2016].