مروری بر نانوکامپوزیتهای پلیمری با هدایت حرارتی بالا و کاربردهای آن
محورهای موضوعی : کاربرد نانوساختارها
مجید میرزایی
1
*
,
مجید رضایی آبادچی
2
,
علیمراد رشیدی
3
1 - گروه پژوهشی مواد غیرفلزی، پژوهشگاه نیرو، تهران، ایران.
2 - گروه پژوهشی مواد غیرفلزی، پژوهشگاه نیرو، تهران، ایران
3 - گروه پژوهشی مواد غیرفلزی، پژوهشگاه نیرو، تهران، ایران.
کلید واژه: نانوکامپوزیت, پلیمر, هدایت حرارتی, پرکننده.,
چکیده مقاله :
در حال حاضر، انباشت و تخلیه سریع حرارت در تجهیزات الکترونیکی و بخشهای مرتبط از عوامل اصلی محدودکننده کوچکسازی و افزایش توان این تجهیزات محسوب میشود. این موضوع به طور قابل توجهی عملکرد و طول عمر دستگاههای الکترونیکی را تحت تأثیر قرار میدهد. بنابراین، بهبود هدایت حرارتی کامپوزیتهای پلیمری رسانای حرارتی (TCPCs)راه حل اصلی این مشکل است. بر خلاف تولید کامپوزیتهای پلیمری با هدایت حرارتی ذاتی، پر کردن زمینه پلیمری با مواد پرکننده دارای هدایت حرارتی میتواند به طور موثرتری هدایت حرارتی کامپوزیتها را افزایش دهد. این مقاله با بررسی مکانیزم هدایت حرارتی آغاز میشود و به تشریح عواملی میپردازد که بر هدایت حرارتی کامپوزیتهای پلیمری اثرگذار هستند، از جمله نوع و ریخت شناسی پرکننده، نحوه توزیع و عاملدار کردن پرکنندهها. سپس به معرفی روشهای مختلف تهیه کامپوزیتهای پلیمری با پرکنندههای متنوع پرداخته میشود. در نهایت، کاربردهای آن شرح داده شده و چالشها و آینده TCPCs بررسی میشود.
The rapid accumulation and dissipation of heat in electronic equipment and related sectors are among the main limiting factors for miniaturization and power enhancement of these devices. This significantly affects the performance and lifespan of electronic devices. Therefore, improving the thermal conductivity of polymer composites (TCPCs)is the primary solution to this problem. Unlike producing polymer composites with inherent thermal conductivity, filling the polymer matrix with thermally conductive fillers can more effectively enhance the thermal conductivity of the composites. This article begins by reviewing the mechanism of thermal conductivity and describes the factors that influence the thermal conductivity of polymer composites, including the type and morphology of the filler, the distribution method, and the functionalization of the fillers. Finally, the applications are described, and the challenges and future of TCPCs are reviewed.
[1] J.S. Kang, M. Li, H. Wu, H. Nguyen, Y. Hu, Experimental observation of high thermal conductivity in boron arsenide, Science, 361 (2018) 575-578.
[2] S. Wang, Y. Liu, Y. Guo, Y. Lu, Y. Huang, H. Xu, D. Wu, J. Sun, Optimal analysis for thermal conductivity variation of EVA/SCF composites prepared by spatial confining forced network assembly, Materials Today Communications, 25 (2020) 101206.
[3] S. Li, Q. Zheng, Y. Lv, X. Liu, X. Wang, P.Y. Huang, D.G. Cahill, B. Lv, High thermal conductivity in cubic boron arsenide crystals, Science, 361 (2018) 579-581.
[4] W. Si, J. Sun, X. He, Y. Huang, J. Zhuang, J. Zhang, V. Murugadoss, J. Fan, D. Wu, Z. Guo, Enhancing thermal conductivity via conductive network conversion from high to low thermal dissipation in polydimethylsiloxane composites, Journal of Materials Chemistry C, 8 (2020) 3463-3475.
[5] J. Zhuang, W. Hu, Y. Fan, J. Sun, X. He, H. Xu, Y. Huang, D. Wu, Fabrication and testing of metal/polymer microstructure heat exchangers based on micro embossed molding method, Microsystem Technologies, 25 (2019) 381-388.
[6] N. Song, D. Jiao, S. Cui, X. Hou, P. Ding, L. Shi, Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management, ACS applied materials & interfaces, 9 (2017) 2924-2932.
[7] Y. Li, X. Tian, W. Yang, Q. Li, L. Hou, Z. Zhu, Y. Tang, M. Wang, B. Zhang, T. Pan, Dielectric composite reinforced by in-situ growth of carbon nanotubes on boron nitride nanosheets with high thermal conductivity and mechanical strength, Chemical Engineering Journal, 358 (2019) 718-724.
[8] C.-R. Yang, C.-D. Chen, C. Cheng, W.-H. Shi, P.-H. Chen, T.-P. Teng, Thermal conductivity enhancement of AlN/PDMS composites using atmospheric plasma modification techniques, International Journal of Thermal Sciences, 155 (2020) 106431.
[9] D. Wu, J. Sun, Y. Liu, Z. Yang, H. Xu, X. Zheng, P. Gou, Rapid fabrication of microstructure on PMMA substrate by the plate to plate Transition‐Spanning isothermal hot embossing method nearby glass transition temperature, Polymer Engineering & Science, 57 (2017) 268-274.
[10] X. Chen, J.S.K. Lim, W. Yan, F. Guo, Y.N. Liang, H. Chen, A. Lambourne, X. Hu, Salt template assisted BN scaffold fabrication toward highly thermally conductive epoxy composites, ACS applied materials & interfaces, 12 (2020) 16987-16996.
[11] D. Zhang, H. Yang, J. Pan, B. Lewis, W. Zhou, K. Cai, A. Benatar, L.J. Lee, J.M. Castro, Multi-functional CNT nanopaper polyurethane nanocomposite fabricated by ultrasonic infiltration and dip soaking processes, Composites Part B: Engineering, 182 (2020) 107646.
[12] N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, D. Ruch, Review of thermal conductivity in composites: Mechanisms, parameters and theory, Progress in Polymer Science, 61 (2016) 1-28.
[13] Y. Guo, K. Ruan, X. Shi, X. Yang, J. Gu, Factors affecting thermal conductivities of the polymers and polymer composites: A review, Composites Science and Technology, 193 (2020) 108134.
[14] Y. Zhang, Y.-J. Heo, Y.-R. Son, I. In, K.-H. An, B.-J. Kim, S.-J. Park, Recent advanced thermal interfacial materials: a review of conducting mechanisms and parameters of carbon materials, Carbon, 142 (2019) 445-460.
[15] Y. Guo, Z. Lyu, X. Yang, Y. Lu, K. Ruan, Y. Wu, J. Kong, J. Gu, Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites, Composites Part B: Engineering, 164 (2019) 732-739.
[16] G.-H. Kim, D. Lee, A. Shanker, L. Shao, M.S. Kwon, D. Gidley, J. Kim, K.P. Pipe, High thermal conductivity in amorphous polymer blends by engineered interchain interactions, Nature materials, 14 (2015) 295-300.
[17] J. Gu, C. Xie, H. Li, J. Dang, W. Geng, Q. Zhang, Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites, Polymer composites, 35 (2014) 1087-1092.
[18] Y. Su, J.J. Li, G.J. Weng, Theory of thermal conductivity of graphene-polymer nanocomposites with interfacial Kapitza resistance and graphene-graphene contact resistance, Carbon, 137 (2018) 222-233.
[19] A. Oluwalowo, N. Nguyen, S. Zhang, J.G. Park, R. Liang, Electrical and thermal conductivity improvement of carbon nanotube and silver composites, Carbon, 146 (2019) 224-231.
[20] Y. Liu, M. Lu, K. Wu, S. Yao, X. Du, G. Chen, Q. Zhang, L. Liang, M. Lu, Anisotropic thermal conductivity and electromagnetic interference shielding of epoxy nanocomposites based on magnetic driving reduced graphene oxide@ Fe3O4, Composites Science and Technology, 174 (2019) 1-10.
[21] G. Fugallo, A. Cepellotti, L. Paulatto, M. Lazzeri, N. Marzari, F. Mauri, Thermal conductivity of graphene and graphite: collective excitations and mean free paths, Nano letters, 14 (2014) 6109-6114.
[22] J. Li, Y. Xiong, X. Wang, S. Yan, C. Yang, W. He, J. Chen, S. Wang, X. Zhang, S. Dai, Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling, Materials Science and Engineering: A, 626 (2015) 400-405.
[23] B. Shen, W. Zhai, W. Zheng, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding, Advanced Functional Materials, 24 (2014) 4542-4548.
[24] N. Song, D. Cao, X. Luo, Q. Wang, P. Ding, L. Shi, Highly thermally conductive polypropylene/graphene composites for thermal management, Composites Part A: Applied Science and Manufacturing, 135 (2020) 105912.
[25] E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature, Nano letters, 6 (2006) 96-100.
[26] H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, Thermal conductivity of polymer-based composites: Fundamentals and applications, Progress in Polymer Science, 59 (2016) 41-85.
[27] B. Guo, Z. Tang, L. Zhang, Transport performance in novel elastomer nanocomposites: Mechanism, design and control, Progress in Polymer Science, 61 (2016) 29-66.
[28] B.-H. Xie, X. Huang, G.-J. Zhang, High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers, Composites Science and Technology, 85 (2013) 98-103.
[29] B. Liu, Y. Li, T. Fei, S. Han, C. Xia, Z. Shan, J. Jiang, Highly thermally conductive polystyrene/polypropylene/boron nitride composites with 3D segregated structure prepared by solution-mixing and hot-pressing method, Chemical Engineering Journal, 385 (2020) 123829.
[30] Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H.H. Hng, H. Zhang, An effective method for the fabrication of few-layer-thick inorganic nanosheets, Angewandte Chemie (International ed. in English), 51 (2012) 9052-9056.
[31] X. Liu, Y. Gao, Y. Shang, X. Zhu, Z. Jiang, C. Zhou, J. Han, H. Zhang, Non-covalent modification of boron nitride nanoparticle-reinforced PEEK composite: Thermally conductive, interfacial, and mechanical properties, Polymer, 203 (2020) 122763.
[32] Y. Ouyang, G. Hou, L. Bai, B. Li, F. Yuan, Constructing continuous networks by branched alumina for enhanced thermal conductivity of polymer composites, Composites Science and Technology, 165 (2018) 307-313.
[33] K. Zhao, G. Liu, W. Cao, Z. Su, J. Zhao, J. Han, B. Dai, K. Cao, J. Zhu, A combination of nanodiamond and boron nitride for the preparation of polyvinyl alcohol composite film with high thermal conductivity, Polymer, 206 (2020) 122885.
[34] C. Fu, C. Yan, L. Ren, X. Zeng, G. Du, R. Sun, J. Xu, C.-P. Wong, Improving thermal conductivity through welding boron nitride nanosheets onto silver nanowires via silver nanoparticles, Composites Science and Technology, 177 (2019) 118-126.
[35] T. Xu, S. Zhou, S. Cui, N. Song, L. Shi, P. Ding, Three-dimensional carbon fiber-graphene network for improved thermal conductive properties of polyamide-imide composites, Composites Part B: Engineering, 178 (2019) 107495.
[36] H. Sun, N. Deng, J. Li, G. He, J. Li, Highly thermal-conductive graphite flake/Cu composites prepared by sintering intermittently electroplated core-shell powders, Journal of Materials Science & Technology, 61 (2021) 93-99.
[37] Y. Guo, K. Ruan, X. Yang, T. Ma, J. Kong, N. Wu, J. Zhang, J. Gu, Z. Guo, Constructing fully carbon-based fillers with a hierarchical structure to fabricate highly thermally conductive polyimide nanocomposites, Journal of Materials Chemistry C, 7 (2019) 7035-7044.
[38] J. Chang, Q. Zhang, Y. Lin, C. Zhou, W. Yang, L. Yan, G. Wu, Carbon nanotubes grown on graphite films as effective interface enhancement for an aluminum matrix laminated composite in thermal management applications, ACS applied materials & interfaces, 10 (2018) 38350-38358.
[39] C. Teng, L. Su, J. Chen, J. Wang, Flexible, thermally conductive layered composite films from massively exfoliated boron nitride nanosheets, Composites Part A: Applied Science and Manufacturing, 124 (2019) 105498.
[40] S. Yuan, J. Bai, C.K. Chua, J. Wei, K. Zhou, Highly enhanced thermal conductivity of thermoplastic nanocomposites with a low mass fraction of MWCNTs by a facilitated latex approach, Composites Part A: Applied Science and Manufacturing, 90 (2016) 699-710.
[41] Z. Lule, J. Kim, Thermally conductive and highly rigid polylactic acid (PLA) hybrid composite filled with surface treated alumina/nano-sized aluminum nitride, Composites Part A: Applied Science and Manufacturing, 124 (2019) 105506.
[42] Y. Sohn, T. Han, J.H. Han, Effects of shape and alignment of reinforcing graphite phases on the thermal conductivity and the coefficient of thermal expansion of graphite/copper composites, Carbon, (2019).
[43] X. Wang, C. Zhang, T. Zhang, C. Tang, Q. Chi, Enhanced thermal conductivity of epoxy resin by incorporating three-dimensional boron nitride thermally conductive network, The Journal of chemical physics, 160 15 (2024).
[44] X. Wang, P. Wu, Preparation of Highly Thermally Conductive Polymer Composite at Low Filler Content via a Self-Assembly Process between Polystyrene Microspheres and Boron Nitride Nanosheets, ACS applied materials & interfaces, 9 23 (2017) 19934-19944.
[45] A. Giri, P.E. Hopkins, A Review of Experimental and Computational Advances in Thermal Boundary Conductance and Nanoscale Thermal Transport across Solid Interfaces, Advanced Functional Materials, 30 (2019).
[46] S.M. Ha, H.L. Lee, S.-G. Lee, B.G. Kim, Y.S. Kim, J.C. Won, W.J. Choi, D.C. Lee, J. Kim, Y.T. Yoo, Thermal conductivity of graphite filled liquid crystal polymer composites and theoretical predictions, Composites Science and Technology, 88 (2013) 113-119.
[47] F. Zhang, K. Fan, F. Saba, J. Yu, Graphene reinforced-graphitized nanodiamonds matrix composites: Fabrication, microstructure, mechanical properties, thermal and electrical conductivity, Carbon, 169 (2020) 416-428.
[48] C. Liang, H. Qiu, Y. Han, H. Gu, P. Song, L. Wang, J. Kong, D. Cao, J. Gu, Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity, Journal of Materials Chemistry C, 7 (2019) 2725-2733.
[49] X. Wang, P. Wu, Highly thermally conductive fluorinated graphene films with superior electrical insulation and mechanical flexibility, ACS applied materials & interfaces, 11 (2019) 21946-21954.
[50] Y. Zhang, J.R. Choi, S. Park, Interlayer polymerization in amine-terminated macromolecular chain-grafted expanded graphite for fabricating highly thermal conductive and physically strong thermoset composites for thermal management applications, Composites Part A: Applied Science and Manufacturing, (2018).
[51] Y. Guo, X. Yang, K. Ruan, J. Kong, M. Dong, J. Zhang, J. Gu, Z. Guo, Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites, ACS applied materials & interfaces, 11 (2019) 25465-25473.
[52] C. Ji, C. Yan, Y. Wang, S. Xiong, F. Zhou, Y. Li, R. Sun, C.-P. Wong, Thermal conductivity enhancement of CNT/MoS2/graphene− epoxy nanocomposites based on structural synergistic effects and interpenetrating network, Composites Part B: Engineering, 163 (2019) 363-370.
[53] H. Liu, S. Gu, H. Cao, X. Li, Y. Li, A dense packing structure constructed by flake and spherical graphite: Simultaneously enhanced in-plane and through-plane thermal conductivity of polypropylene/graphite composites, Composites Communications, 19 (2020) 25-29.
[54] W. Chen, K. Wu, Q. Liu, M. Lu, Functionalization of graphite via Diels-Alder reaction to fabricate poly (vinyl alcohol) composite with enhanced thermal conductivity, Polymer, 186 (2020) 122075.
[55] C. Du, M. Cao, M. Li, H. Guo, R. Liu, B. Li, Homogeneously dispersed urchin-structured Fe3O4 with graphitic carbon spines inside poly (vinylidene fluoride) for efficient thermal conduction, Composites Science and Technology, 192 (2020) 108106.
[56] B. Yang, Y. Pan, Y. Yu, J. Wu, R. Xia, S. Wang, Y. Wang, L. Su, J. Miao, J. Qian, Filler network structure in graphene nanoplatelet (GNP)-filled polymethyl methacrylate (PMMA) composites: From thermorheology to electrically and thermally conductive properties, Polymer Testing, 89 (2020) 106575.
[57] S. Gong, X. Cheng, Y. Li, X. Wang, Y. Wang, H. Zhong, Effect of nano-SiC on thermal properties of expanded graphite/1-octadecanol composite materials for thermal energy storage, Powder Technology, 367 (2020) 32-39.
[58] C. Li, L.-Y. Tan, X.-L. Zeng, D.-L. Zhu, R. Sun, J.-B. Xu, C.-P. Wong, Polymer composites with high thermal conductivity optimized by polyline-folded graphite paper, Composites Science and Technology, 188 (2020) 107970.
[59] J. He, H. Wang, Q. Qu, Z. Su, T. Qin, Y. Da, X. Tian, Construction of interconnected SiC particles attached rGO structure in epoxy composites to achieve significant thermal conductivity enhancement, Materials Today Communications, 25 (2020) 101584.
[60] M. Ma, L. Xu, L. Qiao, S. Chen, Y. Shi, H. He, X. Wang, Nanofibrillated Cellulose/MgO@ rGO composite films with highly anisotropic thermal conductivity and electrical insulation, Chemical Engineering Journal, 392 (2020) 123714.
[61] X. He, Y. Wang, Highly thermally conductive polyimide composite films with excellent thermal and electrical insulating properties, Industrial & Engineering Chemistry Research, 59 (2020) 1925-1933.
[62] H.-Y. Wang, Y.-b. You, J.-W. Zha, Z.-M. Dang, Fabrication of BaTiO3@ super short MWCNTs core-shell particles reinforced PVDF composite films with improved dielectric properties and high thermal conductivity, Composites Science and Technology, 200 (2020) 108405.
[63] R. Wang, C. Xie, S. Luo, H. Xu, B. Gou, L. Zeng, Preparation and properties of MWCNTs-BNNSs/epoxy composites with high thermal conductivity and low dielectric loss, Materials Today Communications, 24 (2020) 100985.
[64] X. Wang, P. Wu, Fluorinated carbon nanotube/nanofibrillated cellulose composite film with enhanced toughness, superior thermal conductivity, and electrical insulation, ACS applied materials & interfaces, 10 (2018) 34311-34321.
[65] M.K. Smith, V. Singh, K. Kalaitzidou, B.A. Cola, High thermal and electrical conductivity of template fabricated P3HT/MWCNT composite nanofibers, ACS Applied Materials & Interfaces, 8 (2016) 14788-14794.
[66] S. Moradi, Y. Calventus, F. Román, J.M. Hutchinson, Achieving high thermal conductivity in epoxy composites: Effect of boron nitride particle size and matrix-filler interface, Polymers, 11 (2019) 1156.
[67] H. Guo, Q. Wang, J. Liu, C. Du, B. Li, Improved interfacial properties for largely enhanced thermal conductivity of poly (vinylidene fluoride)-based nanocomposites via functionalized multi-wall carbon nanotubes, Applied Surface Science, 487 (2019) 379-388.
[68] B. Anis, H. El Fllah, T. Ismail, W.M. Fathallah, A. Khalil, O. Hemeda, Y.A. Badr, Preparation, characterization, and thermal conductivity of polyvinyl-formaldehyde/MWCNTs foam: A low cost heat sink substrate, Journal of Materials Research and Technology, 9 (2020) 2934-2945.
[69] Z.-G. Wang, Y.-L. Yang, Z.-L. Zheng, R.-T. Lan, K. Dai, L. Xu, H.-D. Huang, J.-H. Tang, J.-Z. Xu, Z.-M. Li, Achieving excellent thermally conductive and electromagnetic shielding performance by nondestructive functionalization and oriented arrangement of carbon nanotubes in composite films, Composites Science and Technology, 194 (2020) 108190.
[70] X. He, Y. Huang, Y. Liu, X. Zheng, S. Kormakov, J. Sun, J. Zhuang, X. Gao, D. Wu, Improved thermal conductivity of polydimethylsiloxane/short carbon fiber composites prepared by spatial confining forced network assembly, Journal of Materials Science, 53 (2018) 14299-14310.
[71] H. Zhang, X. Zhang, D. Li, X. Yang, D. Wu, J. Sun, Thermal conductivity enhancement via conductive network conversion from “sand-like” to “stone-like” in the polydimethylsiloxane composites, Composites Communications, 22 (2020) 100509.
[72] H. Wang, L. Li, Y. Chen, M. Li, H. Fu, X. Hou, X. Wu, C.-T. Lin, N. Jiang, J. Yu, Efficient thermal transport highway construction within epoxy matrix via hybrid carbon fibers and alumina particles, ACS omega, 5 (2020) 1170-1177.
[73] Y.-H. Zhao, Y.-F. Zhang, S.-L. Bai, X.-W. Yuan, Carbon fibre/graphene foam/polymer composites with enhanced mechanical and thermal properties, Composites Part B: Engineering, 94 (2016) 102-108.
[74] M. Owais, J. Zhao, A. Imani, G. Wang, H. Zhang, Z. Zhang, Synergetic effect of hybrid fillers of boron nitride, graphene nanoplatelets, and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites, Composites Part A: Applied Science and Manufacturing, 117 (2019) 11-22.
[75] J. Wei, M. Liao, A. Ma, Y. Chen, Z. Duan, X. Hou, M. Li, N. Jiang, J. Yu, Enhanced thermal conductivity of polydimethylsiloxane composites with carbon fiber, Composites Communications, 17 (2020) 141-146.
[76] J. Ji, S.-W. Chiang, M. Liu, X. Liang, J. Li, L. Gan, Y. He, B. Li, F. Kang, H. Du, Enhanced thermal conductivity of alumina and carbon fibre filled composites by 3-D printing, Thermochimica acta, 690 (2020) 178649.
[77] T. Goto, T. Ito, K. Mayumi, R. Maeda, Y. Shimizu, K. Hatakeyama, K. Ito, Y. Hakuta, K. Terashima, Movable cross-linked elastomer with aligned carbon nanotube/nanofiber as high thermally conductive tough flexible composite, Composites Science and Technology, 190 (2020) 108009.
[78] F. Xu, Y. Cui, D. Bao, D. Lin, S. Yuan, X. Wang, H. Wang, Y. Sun, A 3D interconnected Cu network supported by carbon felt skeleton for highly thermally conductive epoxy composites, Chemical Engineering Journal, 388 (2020) 124287.
[79] J. Ma, T. Shang, L. Ren, Y. Yao, T. Zhang, J. Xie, B. Zhang, X. Zeng, R. Sun, J.-B. Xu, Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material, Chemical Engineering Journal, 380 (2020) 122550.
[80] L. Guo, Z. Zhang, M. Li, R. Kang, Y. Chen, G. Song, S.-T. Han, C.-T. Lin, N. Jiang, J. Yu, Extremely high thermal conductivity of carbon fiber/epoxy with synergistic effect of MXenes by freeze-drying, Composites Communications, 19 (2020) 134-141.
[81] C. Yu, Q. Zhang, J. Zhang, R. Geng, W. Tian, X. Fan, Y. Yao, One-step in situ ball milling synthesis of polymer-functionalized few-layered boron nitride and its application in high thermally conductive cellulose composites, ACS Applied Nano Materials, 1 (2018) 4875-4883.
[82] T. Ma, Y. Zhao, K. Ruan, X. Liu, J. Zhang, Y. Guo, X. Yang, J. Kong, J. Gu, Highly thermal conductivities, excellent mechanical robustness & flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures, ACS applied materials & interfaces, (2019).
[83] L. Zhao, L. Yan, C. Wei, Q. Li, X. Huang, Z. Wang, M. Fu, J. Ren, Synergistic Enhanced Thermal Conductivity of Epoxy Composites with Boron Nitride Nanosheets and Microspheres, Journal of Physical Chemistry C, 124 (2020) 12723-12733.
[84] T. Huang, Y. Li, M. Chen, L. Wu, Bi-directional high thermal conductive epoxy composites with radially aligned boron nitride nanosheets lamellae, Composites Science and Technology, 198 (2020) 108322.
[85] X. Chen, J.S.K. Lim, W. Yan, F. Guo, Y.N. Liang, H. Chen, A. Lambourne, X. Hu, Salt Template Assisted BN Scaffold Fabrication Towards Highly Thermal Conductive Epoxy Composites, ACS applied materials & interfaces, (2020).
[86] J. You, H.-H. Choi, Y.M. Lee, J. Cho, M. Park, S.-S. Lee, J.H. Park, Plasma-assisted mechanochemistry to produce polyamide/boron nitride nanocomposites with high thermal conductivities and mechanical properties, Composites Part B: Engineering, (2019).
[87] X. Wang, P. Wu, 3D Vertically Aligned BNNS Network with Long-Range Continuous Channels for Achieving a Highly Thermally Conductive Composite, ACS applied materials & interfaces, (2019).
[88] B. Liu, Y. Li, T. Fei, H. Shuai, C. Xia, Z. Shan, J. Jiang, Highly thermally conductive polystyrene/polypropylene/boron nitride composites with 3D segregated structure prepared by solution-mixing and hot-pressing method, Chemical Engineering Journal, 385 (2020) 123829.
[89] M. Li, M. Wang, X. Hou, Z. Zhan, H. Wang, H. Fu, C.T. Lin, L. Fu, N. Jiang, J. Yu, Highly thermal conductive and electrical insulating polymer composites with boron nitride, Composites Part B-engineering, 184 (2020) 107746.
[90] L. Xin, Y. Gao, Y. Shang, X. Zhu, Z. Jiang, Z. Chenyi, H. Jinxuan, H. Zhang, Non-covalent modification of boron nitride nanoparticle-reinforced PEEK composite: Thermally conductive, interfacial, and mechanical properties, Polymer, 203 (2020) 122763.
[91] G. Xiao, J. Di, H. Li, J. Wang, Highly thermally conductive, ductile biomimetic boron nitride/aramid nanofiber composite film, Composites Science and Technology, 189 (2020) 108021.
[92] A. Shi, Y. Li, W. Liu, J.Z. Xu, D. Yan, J. Lei, Z.M. Li, Highly thermally conductive and mechanically robust composite of linear ultrahigh molecular weight polyethylene and boron nitride via constructing nacre-like structure, Composites Science and Technology, (2019).
[93] Z. Wang, W. Liu, Y.-H. Liu, Y. Ren, L. Yanpu, L. Zhou, J.Z. Xu, J. Lei, Z.M. Li, Highly thermal conductive, anisotropically heat-transferred, mechanically flexible composite film by assembly of boron nitride nanosheets for thermal management, Composites Part B-engineering, 180 (2020) 107569.
[94] X. Jia, Q. Li, C. Ao, R. Hu, T. Xia, Z. Xue, Q. Wang, X. Deng, W. Zhang, C. Lu, High thermal conductive shape-stabilized phase change materials of polyethylene glycol/boron nitride@ chitosan composites for thermal energy storage, Composites Part A: Applied Science and Manufacturing, 129 (2020) 105710.
[95] Q. Li, Z. Xue, J. Zhao, C. Ao, X. Jia, T. Xia, Q. Wang, X. Deng, W. Zhang, C. Lu, Mass production of high thermal conductive boron nitride/nanofibrillated cellulose composite membranes, Chemical Engineering Journal, 383 (2020) 123101.
[96] Y.J. Hwang, J.M. Kim, L.S. Kim, J.Y. Jang, M. Kim, S. Jeong, J.Y. Cho, G.-R. Yi, Y.S. Choi, G. Lee, Epoxy-based thermally conductive adhesives with effective alumina and boron nitride for superconducting magnet, Composites Science and Technology, 200 (2020) 108456.
[97] M.W. Akhtar, J.S. Kim, M.A. Memon, M.M. Baloch, Hybridization of hexagonal boron nitride nanosheets and multilayer graphene: Enhanced thermal properties of epoxy composites, Composites Science and Technology, 195 (2020) 108183.
[98] B. Hu, H. Guo, Q. Wang, W. Zhang, S. Song, X. Li, Y. Li, B. Li, Enhanced thermal conductivity by constructing 3D-networks in poly (vinylidene fluoride) composites via positively charged hexagonal boron nitride and silica coated carbon nanotubes, Composites Part A: Applied Science and Manufacturing, 137 (2020) 106038.
[99] Z. Liu, J. Li, X. Liu, Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties, ACS applied materials & interfaces, 12 (2020) 6503-6515.
[100] Y. Ouyang, X. Li, F. Ding, L. Bai, F. Yuan, Simultaneously enhance thermal conductive property and mechanical properties of silicon rubber composites by introducing ultrafine Al2O3 nanospheres prepared via thermal plasma, Composites Science and Technology, 190 (2020) 108019.
[101] Y. Han, X. Shi, X. Yang, Y. Guo, J. Zhang, J. Kong, J. Gu, Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers, Composites Science and Technology, 187 (2020) 107944.
[102] B. Wu, R. Chen, R. Fu, S. Agathopoulos, X. Su, H. Liu, Low thermal expansion coefficient and high thermal conductivity epoxy/Al2O3/T-ZnOw composites with dual-scale interpenetrating network structure, Composites Part A: Applied Science and Manufacturing, 137 (2020) 105993.
[103] C. Li, B. Liu, Z. Gao, H. Wang, M. Liu, S. Wang, C. Xiong, Electrically insulating ZnOs/ZnOw/silicone rubber nanocomposites with enhanced thermal conductivity and mechanical properties, Journal of Applied Polymer Science, 135 (2018) 46454.
[104] R. Yan, F. Su, L. Zhang, C. Li, Highly enhanced thermal conductivity of epoxy composites by constructing dense thermal conductive network with combination of alumina and carbon nanotubes, Composites Part A: Applied Science and Manufacturing, 125 (2019) 105496.
[105] C. Xiao, L. Chen, Y. Tang, X. Zhang, K. Zheng, X. Tian, Three dimensional porous alumina network for polymer composites with enhanced thermal conductivity, Composites Part A: Applied Science and Manufacturing, 124 (2019) 105511.
[106] Y. Yuan, Z. Li, L. Cao, B. Tang, S. Zhang, Modification of Si3N4 ceramic powders and fabrication of Si3N4/PTFE composite substrate with high thermal conductivity, Ceramics International, 45 (2019) 16569-16576.
[107] C. Guan, Y. Qin, L. Li, M. Wang, C.-T. Lin, X. He, K. Nishimura, J. Yu, J. Yi, N. Jiang, Highly thermally conductive polymer composites with barnacle-like nano-crystalline Diamond@ Silicon carbide hybrid architecture, Composites Part B: Engineering, 198 (2020) 108167.
[108] M.C. Vu, W.-K. Choi, S.G. Lee, P.J. Park, D.H. Kim, M.A. Islam, S.-R. Kim, High thermal conductivity enhancement of polymer composites with vertically aligned silicon carbide sheet scaffolds, ACS applied materials & interfaces, 12 (2020) 23388-23398.
[109] M.C. Vu, N.A.T. Thieu, W.K. Choi, M.A. Islam, S.-R. Kim, Ultralight covalently interconnected silicon carbide aerofoam for high performance thermally conductive epoxy composites, Composites Part A: Applied Science and Manufacturing, 138 (2020) 106028.
[110] Z. Wei, W. Xie, B. Ge, Z. Zhang, W. Yang, H. Xia, B. Wang, H. Jin, N. Gao, Z. Shi, Enhanced thermal conductivity of epoxy composites by constructing aluminum nitride honeycomb reinforcements, Composites Science and Technology, 199 (2020) 108304.
[111] M. Liu, S.-W. Chiang, X. Chu, J. Li, L. Gan, Y. He, B. Li, F. Kang, H. Du, Polymer composites with enhanced thermal conductivity via oriented boron nitride and alumina hybrid fillers assisted by 3-D printing, Ceramics International, 46 (2020) 20810-20818.
[112] K. Zhang, P. Tao, Y. Zhang, X. Liao, S. Nie, Highly thermal conductivity of CNF/AlN hybrid films for thermal management of flexible energy storage devices, Carbohydrate Polymers, 213 (2019) 228-235.
[113] C. Ji, Y. Wang, Z. Ye, L. Tan, D. Mao, W. Zhao, X. Zeng, C. Yan, R. Sun, D.J. Kang, Ice-templated MXene/Ag–epoxy nanocomposites as high-performance thermal management materials, ACS Applied Materials & Interfaces, 12 (2020) 24298-24307.
[114] C. Yan, T. Yu, C. Ji, D.J. Kang, N. Wang, R. Sun, C.P. Wong, Tailoring Highly Thermal Conductive Properties of Te/MoS2/Ag Heterostructure Nanocomposites Using a Bottom‐Up Approach, Advanced Electronic Materials, 5 (2019) 1800548.
[115] T. Ha, D.-G. Kim, J.-W. Ka, Y.S. Kim, W.-G. Koh, H.S. Lim, Y. Yoo, Simultaneous effects of silver-decorated graphite nanoplatelets and anisotropic alignments on improving thermal conductivity of stretchable poly (vinyl alcohol) composite films, Composites Part A: Applied Science and Manufacturing, 138 (2020) 106045.
[116] Y. Wang, W. Wu, D. Drummer, C. Liu, W. Shen, F. Tomiak, K. Schneider, X. Liu, Q. Chen, Highly thermally conductive polybenzoxazine composites based on boron nitride flakes deposited with copper particles, Materials & Design, 191 (2020) 108698.
[117] M.C. Vu, Q.-V. Bach, D.D. Nguyen, T.S. Tran, M. Goodarzi, 3D interconnected structure of poly (methyl methacrylate) microbeads coated with copper nanoparticles for highly thermal conductive epoxy composites, Composites Part B: Engineering, 175 (2019) 107105.
[118] Y. Wen, C. Chen, Y. Ye, Z. Xue, H. Liu, X. Zhou, Y. Zhang, D. Li, X. Xie, Y.-W. Mai, Advances on Thermally Conductive Epoxy‐Based Composites as Electronic Packaging Underfill Materials—A Review, Advanced Materials, 34 (2022).
[119] C. Xiao, Y. Tang, L. Chen, X. Zhang, K. Zheng, X. Tian, Preparation of highly thermally conductive epoxy resin composites via hollow boron nitride microbeads with segregated structure, Composites Part A: Applied Science and Manufacturing, (2019).
[120] R. Yan, F.-j. Su, L. Zhang, C. Li, Highly enhanced thermal conductivity of epoxy composites by constructing dense thermal conductive network with combination of alumina and carbon nanotubes, Composites Part A: Applied Science and Manufacturing, (2019).
[121] J. Liu, H. Feng, J. Dai, K. Yang, G. Chen, S. Wang, D. Jin, X. Liu, A Full-component recyclable Epoxy/BN thermal interface material with anisotropy high thermal conductivity and interface adaptability, Chemical Engineering Journal, (2023).
[122] M.-D. Li, X.-Q. Shen, X. Chen, J.-M. Gan, F. Wang, J. Li, X.-L. Wang, Q. Shen, Thermal management of chips by a device prototype using synergistic effects of 3-D heat-conductive network and electrocaloric refrigeration, Nature Communications, 13(2022).
[123] Q. Ma, X. Wang, Y. Chen, L. Chen, L. Zhang, X. Zhao, N. Bing, W. Yu, H. Xie, Poly(vinyl alcohol)-Based Nanofibers with Improved Thermal Conductivity and Efficient Photothermal Response for Wearable Thermal Management, ACS Applied Nano Materials, (2023).
[124] H.-B. Chen, Y. Ding, G. Zhu, Y. Liu, Q. Fang, X. Bai, Y. Zhao, X. Li, X. Huang, T. Zhang, B. Li, B. Sun, A new route to fabricate flexible, breathable composites with advanced thermal management capability for wearable electronics, npj Flexible Electronics, 7 (2023) 1-9.
[125] K. Ruan, Y. Guo, J. Gu, Liquid Crystalline Polyimide Films with High Intrinsic Thermal Conductivities and Robust Toughness, Macromolecules, 54 (2021) 4934-4944.
[126] H. Yu, C. Chen, J. Sun, H. Zhang, Y. Feng, M. Qin, W. Feng, Highly Thermally Conductive Polymer/Graphene Composites with Rapid Room-Temperature Self-Healing Capacity, Nano-Micro Letters, 14 (2022).
[127] ApplicationT, A.U. Agobi, H. Louis, T.O. Magu, P.M. Dass, A Review on Conducting Polymers-Based Composites for Energy Storage Application, Journal of Chemical Reviews, (2019).
[128] Q. Huang, X. Li, G. Zhang, J. Deng, C. Wang, Thermal management of Lithium-ion battery pack through the application of flexible form-stable composite phase change materials, Applied Thermal Engineering, (2021).
[129] H. Guo, H. Zhao, H. Niu, Y. Ren, H. Fang, X. Fang, R. Lv, M. Maqbool, S. Bai, Highly Thermally Conductive 3D Printed Graphene Filled Polymer Composites for Scalable Thermal Management Applications, ACS nano, (2021).
[130] G. Cheng, Z. Wang, X. Wang, Y. He, All-climate thermal management structure for batteries based on expanded graphite/polymer composite phase change material with a high thermal and electrical conductivity, Applied Energy, (2022).
[131] X. Yin, L. Wang, Y. Kim, N. Ding, J. Kong, D. Safanama, Y. Zheng, J. Xu, D.V.M. Repaka, K. Hippalgaonkar, S.W. Lee, S. Adams, G.W. Zheng, Thermal Conductive 2D Boron Nitride for High‐Performance All‐Solid‐State Lithium–Sulfur Batteries, Advanced Science, 7 (2020).
[132] J. Chen, Y. Zhou, X. Huang, C. Yu, D. Han, A. Wang, Y. Zhu, K. Shi, Q. Kang, P. Li, P. Jiang, X.H. Qian, H. Bao, S. Li, G. Wu, X. Zhu, Q. Wang, Ladderphane copolymers for high-temperature capacitive energy storage, Nature, 615 (2023) 62-66.
[133] F.S. Hwang, T. Confrey, C. Reidy, D. Picovici, D. Callaghan, D. Culliton, C. Nolan, Review of battery thermal management systems in electric vehicles, Renewable and Sustainable Energy Reviews, (2024).
[134] Y. Lin, Q. Kang, Y. Liu, Y. Zhu, P. Jiang, Y.-W. Mai, X. Huang, Flexible, Highly Thermally Conductive and Electrically Insulating Phase Change Materials for Advanced Thermal Management of 5G Base Stations and Thermoelectric Generators, Nano-Micro Letters, 15(2023).
[135] P. Li, X. Huang, Thermally conductive polymer composites for high voltage insulation, 22nd International Symposium on High Voltage Engineering (ISH 2021), 2021 (2021) 30-37.
[136] W. Aftab, M.S. Khurram, J. Shi, H. Tabassum, Z. Liang, A. Usman, W. Guo, X. Huang, W. Wu, R. Yao, Q. Yan, R. Zou, Highly efficient solar-thermal storage coating based on phosphorene encapsulated phase change materials, Energy Storage Materials, 32 (2020) 199-207.
[137] J. Gao, G. Han, J. Song, C. He, J. Hu, W.H. Wang, Y. Feng, C. Liu, Customizing 3D thermally conductive skeleton by 1D aramid Nanofiber/2D graphene for high-performance phase change composites with excellent solar-to-thermal conversion ability, Materials Today Physics, (2022).
[138] X. Huang, Y. Lin, G. Fang, Thermal properties of polyvinyl butyral/graphene composites as encapsulation materials for solar cells, Solar Energy, 161 (2018) 187-193.
[139] X. Zhang, X. Chao, L. Lou, J. Fan, Q. Chen, B. Li, L. Ye, D. Shou, Personal thermal management by thermally conductive composites: A review, Composites Communications, (2020) 100595.
[140] X. Huang, Z. Li, Y. Li, X. Wu, C. Liu, H. Xie, W. Yu, Thermally Conductive Boron Nitride Nanosheets on Electrospun Thermoplastic Polyurethane for Wearable Janus-Type Fabrics with Simultaneous Thermal and Moisture Management, ACS Applied Nano Materials, (2024).
[141] X. Yu, Y. Li, X. Wang, Y. Si, J. Yu, B. Ding, Thermoconductive, Moisture-Permeable, and Superhydrophobic Nanofibrous Membranes with Interpenetrated Boron Nitride Network for Personal Cooling Fabrics, ACS applied materials & interfaces, (2020).
[142] Y. Jing, Z. Zhao, X. Cao, Q. Sun, Y. Yuan, T. Li, Ultraflexible, cost-effective and scalable polymer-based phase change composites via chemical cross-linking for wearable thermal management, Nature Communications, 14(2023).
[143] Y.-G. Lv, Y.-G. Lv, Y. Wang, T. Meng, Q. Wang, W.-X. Chu, Review on Thermal Management Technologies for Electronics in Spacecraft Environment, Energy Storage and Saving, (2024).
[144] K.H. Ryu, M. Kang, J. Kim, N.-H. You, S.G. Jang, K.U. Jeong, S. Ahn, D.Y. Kim, Spacesuit Textiles from Extreme Fabric Materials: Aromatic Amide Polymer and Boron Nitride Nanotube Composite Fiber for Neutron Shielding and Thermal Management, Advanced Fiber Materials, (2024).
[145] A. Verma, A Perspective on the Potential Material Candidate for Railway Sector Applications: PVA Based Functionalized Graphene Reinforced Composite, Applied Science and Engineering Progress, (2022).
[146] C. Zhang, Y. Li, W. Kang, X. Liu, Q. Wang, Current advances and future perspectives of additive manufacturing for functional polymeric materials and devices, SusMat, 1 2021) 127 - 147).