مروری کوتاه بر کاربرد نانوجاذب های بر پایه گرافن برای حذف آنتی بیوتیک تتراسایکلین از محیط آبی
محورهای موضوعی : کاربرد نانوساختارهامیترا مهرابی 1 * , فاطمه هنرآسا 2
1 - گروه شیمی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
2 - گروه شیمی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
کلید واژه: جذب, نانوجاذب, گرافن اکسید, تتراسایکلین, محیط آبی.,
چکیده مقاله :
استفاده روز افزون از آنتی بیوتیک های خانواده تتراسایکلین با اهداف گوناگون از قبیل کنترل بیماری های عفونی در انسان ها، کاربرد در دامپزشکی و آبزی پروری، آلودگی محیط زیست به خصوص محیط آبی و به دنبال آن مقاومت بیماری های باکتریایی به این آنتی بیوتیک را در پی داشته است. جذب یکی از راه های حذف تتراسایکلین ها از محیط آبی می باشد که به دلیل آسانی انجام عملیات و مقرون به صرفه بودن آن از لحاظ اقتصادی و زمانی مورد توجه محققان قرار گرفته است. استفاده از اکسید گرافن به عنوان جاذب به دلیل خواص منحصر به فرد این نانوکربن – به خصوص آب دوست بودن اکسید گرافن نسبت به گرافن- از سال ۲۰۱۲ میلادی مورد توجه قرار گرفت. پس از آن محققان با به کارگیری روش های اصلاح شیمیایی سطح گرافن، اکسید گرافن و اکسید گرافن کاهش یافته اقدام به مطالعه مکانیسم حذف تتراسایکلین ها از محیط آبی از طریق بررسی ایزوترم، سینتیک جذب و بهینه کردن شرایط آزمایش مانند pH محلول، مقدار جاذب، غلظت اولیه محلول تتراسایکلین، دما و قدرت یونی کردند. در این مقاله مروری کوتاه، ضمن معرفی مدل های ریاضی مربوط به فرایند جذب، مقالات ۱۲ سال اخیر درباره استفاده از نانوجاذب های بر پایه گرافن و مشتقاتش در حذف آنتی بیوتیک تتراسایکلین از محیط آبی بررسی شده اند.
Ever-increasing exploitation of tetracycline antibiotics (TCs) for controlling infectious diseases in humans and animals, and other applications of TCs in other industries, such as veterinary medicine and aquaculture have made our environment especially the aquatic medium contaminated. As a result, many bacteria have become resistant to this class of antibiotics in which this resistivity has made treating humans with TCs antibiotics problematic. Adsorption is a popular method used for removing TCs from aqueous solution due to its ease of operation and at the same time being economically and timely efficient. Researchers have been applying graphene oxide as an adsorbent since 2012 due to its interesting properties, specifically higher hydrophilicity in compared to graphene. Since then and by employing surface modification techniques on graphene, graphene oxide, and reduced graphene oxide, scientists have been attempting to study the removal efficiency of TCs from aqueous solution through studying adsorption isotherm and adsorption kinetics. In addition, studies have been conducted to optimize the condition of the experiment, such as pH, contact time, dosage of adsorbent, initial concentration of TCs solution and ionic strength. Herein, by introducing the mathematical models related to the adsorption process, articles of the past 12 years about using nano-adsorbents based on graphene and its derivatives for TCs removal have been reviewed.
1. Larsson, D. G. J. Antibiotics in the environment. Upsala Journal of Medical Sciences 2014, 119(2), 108–112. doi:10.3109/03009734.2014.896438.
2. Harrower, J.; McNaughtan, M.; Hunter, C.; Hough, R.; Zhang, Z.; Helwig, K. Chemical Fate and Partitioning Behavior of Antibiotics in the Aquatic Environment—A Review. Environmental Toxicology and Chemistry 2021, 40(12), 3275–3298. doi:10.1002/etc.5191.
3. Chopra, I.; Roberts, M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiology and Molecular Biology Reviews 2001, 65(2), 232–260. doi:10.1128/MMBR.65.2.232-260.2001.
4. Nelson, M. L. Chapter 11. The chemistry and biology of the tetracyclines; 2002; pp 105–114. doi:10.1016/S0065-7743(02)37012-X.
5. Sánchez, A. R.; Rogers, R. S.; Sheridan, P. J. Tetracycline and other tetracycline‐derivative staining of the teeth and oral cavity. International Journal of Dermatology 2004, 43(10), 709–715. doi:10.1111/j.1365-4632.2004.02108.x.
6. Ahmad, F.; Zhu, D.; Sun, J. Environmental fate of tetracycline antibiotics: degradation pathway mechanisms, challenges, and perspectives. Environmental Sciences Europe 2021, 33(1), 64. doi:10.1186/s12302-021-00505-y.
7. Duggar, B. M. AUREOMYCIN: A PRODUCT OF THE CONTINUING SEARCH FOR NEW ANTIBIOTICS. Annals of the New York Academy of Sciences 2011, 1241(1), 163–169. doi:10.1111/j.1749-6632.2011.06254.x.
8. Priya, S. S.; Radha, K. V. A Review on the Adsorption Studies of Tetracycline onto Various Types of Adsorbents. Chemical Engineering Communications 2017, 204(8), 821–839. doi:10.1080/00986445.2015.1065820.
9. Finlay, A. C.; Hobby, G. L.; P’an, S. Y.; Regna, P. P.; Routien, J. B.; Seeley, D. B.; et al. Terramycin, a New Antibiotic. Science 1950, 111(2874), 85–85. doi:10.1126/science.111.2874.85.a.
10. Rusu, A.; Buta, E. L. The Development of Third-Generation Tetracycline Antibiotics and New Perspectives. Pharmaceutics 2021, 13(12), 2085. doi:10.3390/pharmaceutics13122085.
11. Wright, G. D. The antibiotic resistome: the nexus of chemical and genetic diversity. Nature Reviews Microbiology 2007, 5(3), 175–186. doi:10.1038/nrmicro1614.
12. Gao, Y.; Li, Y.; Zhang, L.; Huang, H.; Hu, J.; Shah, S. M.; et al. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. Journal of Colloid and Interface Science 2012, 368(1), 540–546. doi:10.1016/j.jcis.2011.11.015.
13. Granados-Chinchilla, F.; Rodríguez, C. Tetracyclines in Food and Feedingstuffs: From Regulation to Analytical Methods, Bacterial Resistance, and Environmental and Health Implications. Journal of Analytical Methods in Chemistry 2017, 2017, 1–24. doi:10.1155/2017/1315497.
14. Leal, J. F.; Santos, E. B. H.; Esteves, V. I. Oxytetracycline in intensive aquaculture: water quality during and after its administration, environmental fate, toxicity and bacterial resistance. Reviews in Aquaculture 2019, 11(4), 1176–1194. doi:10.1111/raq.12286.
15. Daghrir, R.; Drogui, P. Tetracycline antibiotics in the environment: a review. Environmental Chemistry Letters 2013, 11(3), 209–227. doi:10.1007/s10311-013-0404-8.
16. WANG, J. L.; XU, L. J. Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Critical Reviews in Environmental Science and Technology 2012, 42(3), 251–325. doi:10.1080/10643389.2010.507698.
17. Amangelsin, Y.; Semenova, Y.; Dadar, M.; Aljofan, M.; Bjørklund, G. The Impact of Tetracycline Pollution on the Aquatic Environment and Removal Strategies. Antibiotics 2023, 12(3), 440. doi:10.3390/antibiotics12030440.
18. Klavarioti, M.; Mantzavinos, D.; Kassinos, D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International 2009, 35(2), 402–417. doi:10.1016/j.envint.2008.07.009.
19. Scaria, J.; Anupama, K. V.; Nidheesh, P. V. Tetracyclines in the environment: An overview on the occurrence, fate, toxicity, detection, removal methods, and sludge management. Science of The Total Environment 2021, 771, 145291. doi:10.1016/j.scitotenv.2021.145291.
20. Ince, N. H.; Tezcanli, G.; Belen, R. K.; Apikyan, İ. G. Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Applied Catalysis B: Environmental 2001, 29(3), 167–176. doi:10.1016/S0926-3373(00)00224-1.
21. Gogate, P. R. Cavitational reactors for process intensification of chemical processing applications: A critical review. Chemical Engineering and Processing: Process Intensification 2008, 47(4), 515–527. doi:10.1016/j.cep.2007.09.014.
22. de Andrade, F. V.; Augusti, R.; de Lima, G. M. Ultrasound for the remediation of contaminated waters with persistent organic pollutants: A short review. Ultrasonics Sonochemistry 2021, 78, 105719. doi:10.1016/j.ultsonch.2021.105719.
23. Suedee, R.; Srichana, T.; Chuchome, T.; Kongmark, U. Use of molecularly imprinted polymers from a mixture of tetracycline and its degradation products to produce affinity membranes for the removal of tetracycline from water. Journal of Chromatography B 2004, 811(2), 191–200. doi:10.1016/j.jchromb.2004.08.044.
24. CATH, T.; CHILDRESS, A.; ELIMELECH, M. Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science 2006, 281(1–2), 70–87. doi:10.1016/j.memsci.2006.05.048.
25. Nidheesh, P. V.; Kumar, A.; Syam Babu, D.; Scaria, J.; Suresh Kumar, M. Treatment of mixed industrial wastewater by electrocoagulation and indirect electrochemical oxidation. Chemosphere 2020, 251, 126437. doi:10.1016/j.chemosphere.2020.126437.
26. Nariyan, E.; Aghababaei, A.; Sillanpää, M. Removal of pharmaceutical from water with an electrocoagulation process; effect of various parameters and studies of isotherm and kinetic. Separation and Purification Technology 2017, 188, 266–281. doi:10.1016/j.seppur.2017.07.031.
27. Nidheesh, P. V.; Zhou, M.; Oturan, M. A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere 2018, 197, 210–227. doi:10.1016/j.chemosphere.2017.12.195.
28. Sandhwar, V. K.; Prasad, B. Comparative study of electrochemical oxidation and electrochemical Fenton processes for simultaneous degradation of phthalic and para-toluic acids from aqueous medium. Journal of Molecular Liquids 2017, 243, 519–532. doi:10.1016/j.molliq.2017.08.016.
29. Huang, S.; Yu, J.; Li, C.; Zhu, Q.; Zhang, Y.; Lichtfouse, E.; et al. The Effect Review of Various Biological, Physical and Chemical Methods on the Removal of Antibiotics. Water 2022, 14(19), 3138. doi:10.3390/w14193138.
30. Ganiyu, S. O.; van Hullebusch, E. D.; Cretin, M.; Esposito, G.; Oturan, M. A. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review. Separation and Purification Technology 2015, 156, 891–914. doi:10.1016/j.seppur.2015.09.059.
31. Gopal, G.; Alex, S. A.; Chandrasekaran, N.; Mukherjee, A. A review on tetracycline removal from aqueous systems by advanced treatment techniques. RSC Advances 2020, 10(45), 27081–27095. doi:10.1039/D0RA04264A.
32. Xiang, Y.; Xu, Z.; Wei, Y.; Zhou, Y.; Yang, X.; Yang, Y.; et al. Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors. Journal of Environmental Management 2019, 237, 128–138. doi:10.1016/j.jenvman.2019.02.068.
33. Yu, F.; Li, Y.; Han, S.; Ma, J. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere 2016, 153, 365–385. doi:10.1016/j.chemosphere.2016.03.083.
34. Zhuang, Y.; Wang, X.; Zhang, L.; Kou, Z.; Shi, B. Confinement Fenton-like degradation of perfluorooctanoic acid by a three dimensional metal-free catalyst derived from waste. Applied Catalysis B: Environmental 2020, 275, 119101. doi:10.1016/j.apcatb.2020.119101.
35. Patel, H. Comparison of batch and fixed bed column adsorption: a critical review. International Journal of Environmental Science and Technology 2022, 19(10), 10409–10426. doi:10.1007/s13762-021-03492-y.
36. Patel, H. Batch and continuous fixed bed adsorption of heavy metals removal using activated charcoal from neem (Azadirachta indica) leaf powder. Scientific Reports 2020, 10(1), 16895. doi:10.1038/s41598-020-72583-6.
37. Saadi, R.; Saadi, Z.; Fazaeli, R.; Fard, N. E. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean Journal of Chemical Engineering 2015, 32(5), 787–799. doi:10.1007/s11814-015-0053-7.
38. Elkhaleefa, A.; Ali, I. H.; Brima, E. I.; Shigidi, I.; Elhag, Ahmed. B.; Karama, B. Evaluation of the Adsorption Efficiency on the Removal of Lead(II) Ions from Aqueous Solutions Using Azadirachta indica Leaves as an Adsorbent. Processes 2021, 9(3), 559. doi:10.3390/pr9030559.
39. Saleh, T. A. Isotherm models of adsorption processes on adsorbents and nanoadsorbents; 2022; pp 99–126. doi:10.1016/B978-0-12-849876-7.00009-9.
40. Aslam, M. M. A.; Kuo, H.-W.; Den, W.; Sultan, M.; Rasool, K.; Bilal, M. Recent trends of carbon nanotubes and chitosan composites for hexavalent chromium removal from aqueous samples; 2022; pp 177–207. doi:10.1016/B978-0-323-90763-7.00006-8.
41. Al-Ghouti, M. A.; Da’ana, D. A. Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials 2020, 393, 122383. doi:10.1016/j.jhazmat.2020.122383.
42. Yan, X.-F.; Fan, X.-R.; Wang, Q.; Shen, Y. An adsorption isotherm model for adsorption performance of silver-loaded activated carbon. Thermal Science 2017, 21(4), 1645–1649. doi:10.2298/TSCI151202048Y.
43. Langmuir, I. THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. Journal of the American Chemical Society 1918, 40(9), 1361–1403. doi:10.1021/ja02242a004.
44. Liu, L.; Luo, X.-B.; Ding, L.; Luo, S.-L. Application of Nanotechnology in the Removal of Heavy Metal From Water. In Nanomaterials for the Removal of Pollutants and Resource Reutilization; Elsevier, 2019; pp 83–147. doi:10.1016/B978-0-12-814837-2.00004-4.
45. Foo, K. Y.; Hameed, B. H. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal 2010, 156(1), 2–10. doi:10.1016/j.cej.2009.09.013.
46. Vadi, M.; Mansoorabad, A. O.; Mohammadi, M.; Rostami, N. Investigation of Langmuir, Freundlich and Temkin Adsorption Isotherm of Tramadol by Multi-Wall Carbon Nanotube. Asian Journal of Chemistry 2013, 25(10), 5467–5469. doi:10.14233/ajchem.2013.14786.
47. Aharoni, C.; Ungarish, M. Kinetics of activated chemisorption. Part 2.—Theoretical models. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1977, 73(0), 456. doi:10.1039/f19777300456.
48. Zhou, X.; Maimaitiniyazi, R.; Wang, Y. Some consideration triggered by misquotation of Temkin model and the derivation of its correct form. Arabian Journal of Chemistry 2022, 15(11), 104267. doi:10.1016/j.arabjc.2022.104267.
49. Tan, K. L.; Hameed, B. H. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers 2017, 74, 25–48. doi:10.1016/j.jtice.2017.01.024.
50. Al-Harby, N. F.; Albahly, E. F.; Mohamed, N. A. Kinetics, Isotherm and Thermodynamic Studies for Efficient Adsorption of Congo Red Dye from Aqueous Solution onto Novel Cyanoguanidine-Modified Chitosan Adsorbent. Polymers 2021, 13(24), 4446. doi:10.3390/polym13244446.
51. Ho, Y. S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochemistry 1999, 34(5), 451–465. doi:10.1016/S0032-9592(98)00112-5.
52. Revellame, E. D.; Fortela, D. L.; Sharp, W.; Hernandez, R.; Zappi, M. E. Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology 2020, 1, 100032. doi:10.1016/j.clet.2020.100032.
53. Weber, W. J.; Morris, J. C. Kinetics of Adsorption on Carbon from Solution. Journal of the Sanitary Engineering Division 1963, 89(2), 31–59. doi:10.1061/JSEDAI.0000430.
54. Zhao, L.; Xue, F.; Yu, B.; Xie, J.; Zhang, X.; Wu, R.; et al. TiO2–graphene sponge for the removal of tetracycline. Journal of Nanoparticle Research 2015, 17(1), 16. doi:10.1007/s11051-014-2825-0.
55. Zhang, Y.; Jiao, Z.; Hu, Y.; Lv, S.; Fan, H.; Zeng, Y.; et al. Removal of tetracycline and oxytetracycline from water by magnetic Fe3O4@graphene. Environmental Science and Pollution Research 2017, 24(3), 2987–2995. doi:10.1007/s11356-016-7964-7.
56. Alatalo, S.-M.; Daneshvar, E.; Kinnunen, N.; Meščeriakovas, A.; Thangaraj, S. K.; Jänis, J.; et al. Mechanistic insight into efficient removal of tetracycline from water by Fe/graphene. Chemical Engineering Journal 2019, 373, 821–830. doi:10.1016/j.cej.2019.05.118.
57. Song, Z.; Ma, Y.-L.; Li, C.-E. The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO2/graphene nanocomposite. Science of The Total Environment 2019, 651, 580–590. doi:10.1016/j.scitotenv.2018.09.240.
58. Rabeie, B.; Mahmoodi, N. M.; Mahkam, M. Morphological diversity effect of graphene quantum dot/MIL88A(Fe) composites on dye and pharmaceuticals (tetracycline and doxycycline) removal. Journal of Environmental Chemical Engineering 2022, 10(5), 108321. doi:10.1016/j.jece.2022.108321.
59. Ghadim, E. E.; Manouchehri, F.; Soleimani, G.; Hosseini, H.; Kimiagar, S.; Nafisi, S. Adsorption Properties of Tetracycline onto Graphene Oxide: Equilibrium, Kinetic and Thermodynamic Studies. PLoS ONE 2013, 8(11), e79254. doi:10.1371/journal.pone.0079254.
60. Lin, Y.; Xu, S.; Li, J. Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles. Chemical Engineering Journal 2013, 225, 679–685. doi:10.1016/j.cej.2013.03.104.
61. Zhao, L.; Dong, P.; Xie, J.; Li, J.; Wu, L.; Yang, S.-T.; et al. Porous graphene oxide–chitosan aerogel for tetracycline removal. Materials Research Express 2013, 1(1), 015601. doi:10.1088/2053-1591/1/1/015601.
62. Hu, X.; Zhao, Y.; Wang, H.; Tan, X.; Yang, Y.; Liu, Y. Efficient Removal of Tetracycline from Aqueous Media with a Fe3O4 Nanoparticles@graphene Oxide Nanosheets Assembly. International Journal of Environmental Research and Public Health 2017, 14(12), 1495. doi:10.3390/ijerph14121495.
63. Yu, B.; Bai, Y.; Ming, Z.; Yang, H.; Chen, L.; Hu, X.; et al. Adsorption behaviors of tetracycline on magnetic graphene oxide sponge. Materials Chemistry and Physics 2017, 198, 283–290. doi:10.1016/j.matchemphys.2017.05.042.
64. Wang, J.; Liu, R.; Yin, X. Adsorptive Removal of Tetracycline on Graphene Oxide Loaded with Titanium Dioxide Composites and Photocatalytic Regeneration of the Adsorbents. Journal of Chemical & Engineering Data 2018, 63(2), 409–416. doi:10.1021/acs.jced.7b00816.
65. Tabrizian, P.; Ma, W.; Bakr, A.; Rahaman, Md. S. pH-sensitive and magnetically separable Fe/Cu bimetallic nanoparticles supported by graphene oxide (GO) for high-efficiency removal of tetracyclines. Journal of Colloid and Interface Science 2019, 534, 549–562. doi:10.1016/j.jcis.2018.09.034.
66. Miao, J.; Wang, F.; Chen, Y.; Zhu, Y.; Zhou, Y.; Zhang, S. The adsorption performance of tetracyclines on magnetic graphene oxide: A novel antibiotics absorbent. Applied Surface Science 2019, 475, 549–558. doi:10.1016/j.apsusc.2019.01.036.
67. Qiao, D.; Li, Z.; Duan, J.; He, X. Adsorption and photocatalytic degradation mechanism of magnetic graphene oxide/ZnO nanocomposites for tetracycline contaminants. Chemical Engineering Journal 2020, 400, 125952. doi:10.1016/j.cej.2020.125952.
68. Hemmat, K.; Khodabakhshi, M. R.; Zeraatkar Moghaddam, A. Synthesis of nanoscale zero‐valent iron modified graphene oxide nanosheets and its application for removing tetracycline antibiotic: Response surface methodology. Applied Organometallic Chemistry 2021, 35(1). doi:10.1002/aoc.6059.
69. Li, Y.; Lai, Z.; Huang, Z.; Wang, H.; Zhao, C.; Ruan, G.; et al. Fabrication of BiOBr/MoS2/graphene oxide composites for efficient adsorption and photocatalytic removal of tetracycline antibiotics. Applied Surface Science 2021, 550, 149342. doi:10.1016/j.apsusc.2021.149342.
70. Ahmed, M. A.; Ahmed, M. A.; Mohamed, A. A. Adsorptive removal of tetracycline antibiotic onto magnetic graphene oxide nanocomposite modified with polyvinylpyrroilidone. Reactive and Functional Polymers 2023, 191, 105701. doi:10.1016/j.reactfunctpolym.2023.105701.
71. Nouri, A.; Ang, W. L.; Mahmoudi, E.; Chua, S. F.; Mohammad, A. W.; Benamor, A.; et al. Decoration of polylactic acid on graphene oxide for efficient adsorption of methylene blue and tetracycline. Chemosphere 2023, 322, 138219. doi:10.1016/j.chemosphere.2023.138219.
72. Mojumder, F.; Yasmin, S.; Shaikh, M. A. A.; Chowdhury, P.; Kabir, M. H. Synthesis of reusable graphene oxide based nickel-iron superparamagnetic nanoadsorbent from electronic waste for the removal of doxycycline in aqueous media. Journal of Hazardous Materials Advances 2024, 14, 100429. doi:10.1016/j.hazadv.2024.100429.
73. Hossain, M. S.; Kabir, M. H.; Ali Shaikh, M. A.; Haque, M. A.; Yasmin, S. Ultrafast and simultaneous removal of four tetracyclines from aqueous solutions using waste material-derived graphene oxide-supported cobalt–iron magnetic nanocomposites. RSC Advances 2024, 14(2), 1431–1444. doi:10.1039/D3RA07597D.
74. Huízar-Félix, A.; Aguilar-Flores, C.; Martínez-de-la Cruz, A.; Barandiarán, J.; Sepúlveda-Guzmán, S.; Cruz-Silva, R. Removal of Tetracycline Pollutants by Adsorption and Magnetic Separation Using Reduced Graphene Oxide Decorated with α-Fe2O3 Nanoparticles. Nanomaterials 2019, 9(3), 313. doi:10.3390/nano9030313.
75. Yakout, A. A.; Alshitari, W.; Akhdhar, A. Synergistic effect of Cu-nanoparticles and β-cyclodextrin functionalized reduced graphene oxide nanocomposite on the adsorptive remediation of tetracycline antibiotics. Carbohydrate Polymers 2021, 273, 118528. doi:10.1016/j.carbpol.2021.118528.
76. Ngoc Tri, N.; Ho, D. Q.; Tran Gia Bao, N.; Tien Trung, N. The adsorption of tetracycline, ciprofloxacin on reduced graphene oxide surfaces: Role of intermolecular interaction. Chemical Physics 2024, 579, 112207. doi:10.1016/j.chemphys.2024.112207.