ارزیابی تاثیر توالی لرزهای بر خرابی خستگی کم چرخه در اتصالات قابهای خمشی فولادی بهینهسازی شده بر اساس عملکرد
محورهای موضوعی : آنالیز سازه - زلزله
1 - گروه مهندسی عمران، واحد گرمی، دانشگاه آزاد اسلامی، گرمی، ایران
کلید واژه: شاخص خرابی, خستگی کم چرخه, بهینهسازی عملکردی, توالی لرزهای, هزینه عمر.,
چکیده مقاله :
هدف اصلی تحقیق حاضر، ارزیابی تاثیر توالی لرزهای بر خرابی خستگی کم چرخه در اتصالات قابهای خمشی فولادی ویژه بهینهسازی شده بر اساس هزینه اولیه ساخت، و هزینه چرخه عمر در چهارچوب نگرش طراحی مبتنی بر عملکرد میباشد. بدین منظور بعد از فاز طراحی بهینه مبتنی بر عملکرد با استفاده از الگوریتم فراکاووشی مرکز جرم و در نظرگیری توابع هدف هزینه اولیه ساخت و هزینه چرخه عمر در روند بهینهسازی، در فاز نهایی، به ارزیابی خستگی کمچرخه در اتصالات، تحت توالی لرزهای پرداخته شده است. در این تحقیق از نرمافزار OpenSees، جهت انجام مدلسازی و تحلیلهای غیرخطی، و از نرمافزار Matlab، بمنظور بهینهسازی در چهارچوب عملکرد با توجه به ضوابط آئیننامه FEMA350، استفاده شده است. سه قاب خمشی فولادی 3، 6 و 12 طبقه مثالهای عددی مورد بررسی در این مطالعه میباشند که تحت 12 شتابنگاشت دارای توالی لرزهای و زلزله اصلی، با استفاده از تحلیل تاریخچه زمانی، به بررسی شاخص خرابی خستگی در ناحیه اتصالات این قابها پرداخته شده است. با توجه به نتایج، سازههای بهینهسازی شده در چهارچوب مبتنی بر عملکرد با در نظرگیری تابع هدف هزینه چرخه عمر در روند بهینهسازی نسبت به سازههای بهینه با تابع هدف هزینه اولیه ساخت در قابهای 3، 6 و 12 طبقه به ترتیب منجر به کاهش 8%، 9% و 30%، شاخص خرابی کم چرخه در برابر زلزلههای اصلی و کاهش 10%، 13% و27% در برابر توالی لرزهای شده است.
The main objective of this study is to evaluate the effect of seismic sequence on low-cycle fatigue failure in specially optimized steel moment frame connections based on initial construction cost and life cycle cost in the framework of the performance-based design approach. For this purpose, after the performance-based optimal design phase using the center of mass meta-exploration algorithm and considering the objective functions of the initial construction cost and the life cycle cost in the optimization process, in the final phase, low-cycle fatigue evaluation in the joints has been done under seismic sequence. In this research, OpenSees software was used to perform nonlinear modeling and analysis, and Matlab software was used to optimize performance according to FEMA350 regulations. Three steel moment frames of 3, 6, and 12 floors are numerical examples investigated in this study, under 12 accelerograms with seismic sequence and main earthquake, using time history analysis, the fatigue failure index in the joints of these frames has been investigated. According to the results, the structures optimized in the performance-based framework by considering the objective function of the life cycle cost in the optimization process compared to the optimal structures with the objective function of the initial construction cost in 3, 6, and 12-story frames, respectively, lead to a reduction of 8%. 9% and 30%, low-cycle damage index against main earthquakes, and 10%, 13%, and 27% reduction against seismic sequence.
[1] Miller DK. Lessons learned from the Northridge earthquake. Engineering Structures. 1998;20:249–260. https://doi.org/10.1016/S0141-0296(97)00031-X
[2] Kuwamura H. Fracture of steel during an earthquake – state-of-the-art in Japan. Engineering Structures. 1998;20(4–6):310–322. https://doi.org/10.1016/S0141-0296(97)00030-8
[3] Youssef N, Bonowitz D, Gross J. A Survey of Steel Moment Resisting Frame Buildings Affected by the 1994 Northridge Earthquake. National Institute of Standards and Technology.
Report No. NISTIR 5625. Gaithersburg, MD. 1995;1. https://doi.org/10.6028/NIST.IR.5625.
[4] Lashkari B. Seismic Risk Evaluation of Steel Structures Based on Low-Cycle Fatigue. Reliability Engineering and System Safety. 1988;20:297-302.
https://doi.org/10.1016/0951-8320(88)90060-9
[5] Zhou H, Wang Y, Yang L, Shi Y. Seismic low-cycle fatigue evaluation of welded beam-to-column connections in steel moment frames through global–local analysis. International Journal of Fatigue. 2014;64:97–113. https://doi.org/10.1016/j.ijfatigue.2014.03.002
[6] Nastar N, Anderson JC, Brandow GE, Nigbor RL. Efects of Low-Cycle Fatigue on a 10-Storey Steel Building. The Structural Design of Tall and Special Buildings 2010;19:95–113. https://doi.org/10.1002/tal.548
[7] Miner MA. Cumulative damage in fatigue. Journal of Applied Mechanics. 1945;12(3): 159–64. https://doi.org/10.1115/1.4009458
[8] Stojadinovic B, Goel SC, Lee K-H, Margarian A, Choi J-H. Parametric tests on unreinforced steel moment connections. Journal of Structural Engineering. 2000;126(1):40–9.
https://doi.org/10.1061/(ASCE)0733-9445(2000)126:1(40)
[9] Ricles JM, Mao CS, Lu L-W. Inelastic cyclic testing of welded unreinforced moment connections. Journal of Structural Engineering. 2002;128(4):429–440. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(429)
[10] Zhai CH, Wen WP, Chen Z, Li S, Xie LL. Damage spectra for the mainshock–aftershock sequence-type ground motions. Soil Dynamics and Earthquake Engineering.2013;45:1–12.
https://doi.org/10.1016/j.soildyn.2012.10.001
[11] Hatzivassiliou M, Hatzigeorgiou GD. Seismic sequence effects on three-dimensional reinforced concrete buildings. Soil Dynamics and Earthquake Engineering. 2015;72:77–88.
https://doi.org/10.1016/j.soildyn.2015.02.005
[12] Ruiz-García J, Aguilar JD. Aftershock seismic assessment taking into account postmainshock residual drifts. Earthquake Engineering & Structural Dynamics.2015;44(9):1391–1407.
https://doi.org/10.1002/eqe.2523
[13] Tesfamariam S, Goda K. Loss estimation for non-ductile reinforced concrete building in Victoria, British Columbia, Canada: effects of mega-thrust Mw9-class subduction earthquakes and aftershocks. Earthquake Engineering & Structural Dynamics. 2015;44(13):2303–2320.
https://doi.org/10.1002/eqe.2523
[14] Hosseinpour F, Abdelnaby AE. Effect of different aspects of multiple earthquakes on the nonlinear behavior of RC structures. Soil Dynamics and Earthquake Engineering.2017;92:706–725.
https://doi.org/10.1016/j.soildyn.2016.11.006
[15] Nazari N, Van de Lindt JW, Li Y. Quantifying Changes in Structural Design Needed to Account for Aftershock Hazard. Journal of Structural Engineering. 2015;141(11): 401-436. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001280
[16] Vitiello U, Asprone D, Di Ludovico M, Prota A. Life-cycle cost optimization of the seismic retrofit of existing RC structures. Bulletin of Earthquake Engineering.2017;15:245-271. https://doi.org/10.1007/s10518-016-0046-x
[17] Gholizadeh S, Ebadijalal M. Performance based discrete topology optimization of steel braced frames by a new metaheuristic. Advances in Engineering Software. 2018;123:77–92. https://doi.org/10.1016/j.advengsoft.2018.06.002
[18] Hassanzadeh A, Gholizadeh S. Collapse-performance-aided design optimization of steel concentrically braced frames. Engineering Structures. 2019;197:109-121. https://doi.org/10.1016/j.engstruct.2019.109411
[19] American Society of Civil Engineers (ASCE 41-13). seismic evaluation and retrofit of existing buildings. Chicago: American Society of Civil Engineers; 2014;1. Available at URL: https://ascelibrary.org/doi/book/10.1061/9780784412855
[20] Federal Emergency Management Agency (FEMA 350). Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings. Washington, DC, USA: Federal Emergency Management Agency; 2000;1. Available at URL: https://ascelibrary.org/doi/book/10.1061/9780784412855
[21] Wen YK, Kang YJ. Minimum building life-cycle cost design criteria. II: applications. Journal of Structural Engineering. 2001;127(3):338–346. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:3(338)
[22] Campbell SD, Richard RW, Partridge JE. Steel moment frame damage predictions using low-cycle fatigue. In: Proceedings of the 14th world conference on earthquake engineering. Beijing. China. 2008;1. https://doi.org/10.1080/10509585.2015.1092083
[23] Sedlacek G, Feldmann M. Safety Consideration of Annex j of Eurocode 3. In Connections in Steel Structures III. 1996;1:453-462.
https://doi.org/10.1016/B978008042821-5/50101-2
[24] Krawinkler H, Zohrei M. Cumulatitive Damage Model in Steel Structures Subjected to Earthquake Ground Motion. Computers and Structures .1983;16(4):531-541.
https://doi.org/10.1016/0045-7949(83)90193-1
[25] NS EN 1993‐1‐9. Eurocode 3: Design of steel structures‐Part 1‐9: Fatigue. CEN-European Committee for Standardization: Brussels, Belgium. 2005;1. Available at URL: https://eurocodes.jrc.ec.europa.eu/showpage.php?id=137.
[26] Ballio G, Calado L, Castiglioni CA. Low cycle fatigue behaviour of structural steel members and connections. Fatigue & Fracture of Engineering Materials & Structures.2007;20(8):1129–46.
https://doi.org/10.1111/j.1460-2695.1997.tb00318.x
[27] Mele E, Calado L, De Luca A. Experimental investigation on European welded connections. Journal of Structural Engineering. 2003;129(10):1301–1311.
https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1301)
[28] Castiglioni CA, Mouzakis HP, Carydis PG. Constant and variable amplitude cyclic behavior of welded steel beam-to-column connections. Journal of Structural Engineering. 2007;11(6):876–902.
https://doi.org/10.1080/13632460601188027
[29] Partridge JE, Paterson SR, Richard RM. Low cycle fatigue tests and fracture analyses of bolted–welded seismic moment frame connections. In: Proceedings., STESSA 2000 Conf. Behavior of Steel Structures in Seismic Areas 2000;21. Available at URL:
https://doi.org/10.1201/9781439828508
[30] Partridge JE, Paterson SR, Richard RM. ATC-24 cuulative damage tests and fracture analyses of bolted–welded seismic moment frame connections. Forensic Engineering.
2003;142–157.
https://doi.org/10.1061/40692(241)17
[31] Richard RM, Allen J, Partridge JE. Accumulated seismic connection damage based upon full scale low cycle fatigue connection tests. In: Proceedings., Structural Engineers Association of California (SEAOC) 70th Annual Convention; 2001:43–48. Available at URL: https://doi.org/10.1061/(ASCE)ST.1943-541X.0003350.
[32] Wang YQ, Zhou H, Shi YJ, Chen H. Fracture behavior analyses of welded beam-to column connections based on elastic and inelastic fracture mechanics. International journal of Steel Structure. 2010;10(3):253–265. https://doi.org/10.1007/BF03215835
[33] American Society for Testing and Materials (ASTM) . Standard Practices for Cycle Counting in Fatigue Analysis. E 1049-85. ASTM International; 2005;1. Available at URL:
https://www.astm.org/e1049-85.html
[34] Reasenberg PA, Jones LM. Earthquake aftershocks: update. Science. 1994;265(5176): 1251–1252. https://doi.org/10.1126/science.265.5176.1251
[35] Yeo G L, Cornell CA. A probabilistic framework for quantification of aftershock ground-motion hazard in California: Methodology and parametric study. Earthquake Engineering & Structural Dynamics. 2009;38(1):45–60. https://doi.org/10.1002/eqe.840