تاثیر شرایط ریز جاذبه و ترکیب طیف نور برروی برخی از ویژگی های فیزیولوژی و بیوشیمیایی گیاه عروسک پشت پرده (Physalis alkekengi L.)
محورهای موضوعی : فیزیولوژی گیاهیفرزاد الانی 1 , علیرضا ایرانبخش 2 * , مصطفی عبادی 3 , حلیمه حسن پور 4 , آزاده حکمت 5
1 - زیست شناسی، دانشکده علوم و فناوری همگرا، علوم زیستی، دانشگاه آزاد واحد علوم و تحقیقات، تهران، ایران
2 - زیست شناسی، دانشکده علوم و فناوری همگرا، علوم زیستی، دانشگاه آزاد واحد علوم و تحقیقات، تهران، ایران
3 - زیست شناسی، دانشکده علوم ، دانشگاه آزاد واحد دامغان، ایران
4 - وزارت علوم، پژوهشگاه هوافضا، پژوهشکده زیست فضا و محیط زیست، گروه فیزیولوژی هوافضا، تهران، ایران
5 - زیست شناسی، دانشکده علوم و فناوری همگرا، دانشگاه آزاد، واحد علوم و تحقیقات، تهران، ایران
کلید واژه: طیف نوری, ریزجاذبه, عروسک پشت پرده, شاخص های رشدی, فعالیت آنتی اکسیدانی,
چکیده مقاله :
چکیده: این پژوهش به منظور بررسی برخی از شاخص های رشدی، فعالیت آنتی اکسیدانی، فلاونوئید کل، انباشت قندهای محلول و میزان تغییرات پروتئین کل در شرایط ریزگرانش و ترکیب طیف نوری با 4 تکرار بر روی گیاه عروسک پشت پرده(Physalis alkekengi L.) انجام گرفت. دانه رست های کشت شده در شرایط کشت درون شیشه (In vitro) در دو شرایط نوری مختلف شامل، سفید(شاهد) و قرمز+ آبی (R+B) در معرض تیمار ریز جاذبه قرار گرفتند. نتایج حاصل از این مطالعه نشان داد که تیمار طیف نوری قرمز+آبی جوانه زنی بذر و محتوای نسبی آب برگ (RWC) را به ترتیب 9/23 و 1/32 درصد نسبت به شاهد افزایش داد. تیمار ریز جاذبه تحت نور سفید و تیمار ریزجاذبه تحت نور قرمز+آبی به ترتیب 1/78 و 4/97 درصد، سبب افزایش زیست توده در مقایسه با کنترل شد. میزان فعالیت آنتی اکسیدانی در گروه های تیماری، افزایش معنی داری را در برگ ها نشان داد که بیشترین مقدار در شرایط ریز جاذبه تحت نورقرمز+ آبی(1/10درصد) بود. تیمار ریز جاذبه تحت طیف نوری قرمز+آبی به طور معنی داری میزان فلاونوئید کل را حدود 6/19 درصد در مقایسه با کنترل بهبود بخشید. بیشترین میزان فعالیت آنزیم فنیل آلانین آمونیالیاز(PAL) در شرایط ریز جاذبه در ریشه 7/9 درصد اندازه گیری شد. تیمار نور قرمز+آبی و ریزگرانش مقدار پروتئین کل و قند محلول را افزایش دادند و همچنین استفاده همزمان از این دو تیمار بیشترین مقدار (به ترتیب 8/71 و 1/45 درصد)را نشان داد. از طیف نور قرمز+آبی می توان به منظور بهبود جوانه زنی بذر و محتوای نسبی آب برگ استفاده کرد. به طور کلی تیمار ریز گرانش تحت تابش قرمز+آبی به طور هم افزایی زیست توده، فعالیت آنتی اکسیدانی، مقدار پروتئین کل و قندهای محلول را در مقایسه با شاهد سفید افزایش می دهد.
1)Bantis, F. 2021. Light Spectrum Differentially Affects the Yield and Phytochemical Content of Microgreen Vegetables in a Plant Factory. Plants, 10(10): 2182.
2) Brand-Williams, W., Cuvelier, M.E. and, C.L.W.T Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1): 25-30.
3) Bradford, MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2): 248-254.
4) Beaudoin-Eagan, L.D. and T.A, Thorpe. 1985. Tyrosine and phenylalanine ammonia lyase activities during shoot initiation in tobacco callus cultures. Plant Physiology, 78(3): 438-441.
5) Bagal, U.R. 2012. Leebens mack JH, Walter Lorenz W and Dean JFD. The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm specific line age. BMC Genoms, 13(3): 1471-2164.
6) Chang, C.C., Yang, M.H., Wen, H.M. and J.C, Chern. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis, 10(3).
7) Clément, G. and K, Slenzka. 2006. Fundamentals of space biology: research on cells, animals, and plants in space. Springer Science & Business Media. (Vol. 18)
8) Çelikel, F.G. and M.S, Reid. 2002. Postharvest handling of stock (Matthiola incana). HortScience, 37(1): 144-147.
9) Dalal, M., Sahu, S., Tiwari, S., Rao, A.R. and K, Gaikwad. 2018. Transcriptome analysis reveals interplay between hormones, ROS metabolism and cell wall biosynthesis for drought-induced root growth in wheat. Plant Physiology and Biochemistry, 130: 482-492.
10) Derakhshan, Z., Ferrante, M., Tadi, M., Ansari, F., Heydari, A., Hosseini, M.S., Conti, G.O. and E.K, Sadrabad. 2018. Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds. Food and chemical toxicology, 114: 108-111.
11) Esmaelpour, S., Iranbakhsh, A., Dilmaghani, K., Marandi, S.J. and Z.O. Ardebili. 2022. The potential contribution of the WRKY53 transcription factor, gamma-aminobutyric acid (GABA) transaminase, and histone deacetylase in regulating growth, organogenesis, photosynthesis, and transcriptional responses of tomato to different light-emitting diodes (LEDs). Journal of Photochemistry and Photobiology B: Biology, 229: 112413.
12) Gulesci, N., Yücebilgic, G. and R, Bilgin. 2021. Review on Evaluation of Physalis peruviana L.’s Antioxidant, Antimicrobial and Biochemical Activities.
13) Gallagher, R.J., Subramanian, C., Grogan, P.T., Kindscher, K., Cao, C.M., Zhang, H., Cohen, M.S. and B.N. Timmermann. 2015. The therapeutic potential of Physalis longifolia against various carcinomas. Pharmanutrition, 3(4): 146-152.
14) Hassanpour, H. and M, Ghanbarzadeh. 2021. Induction of cell division and antioxidative enzyme activity of Matricaria chamomilla L. cell line under clino-rotation. Plant Cell, Tissue and Organ Culture (PCTOC), 146(2): 215-224.
15) Lafuente, M.T., Romero, P. and Ballester, A.R., 2021. Coordinated activation of the metabolic pathways induced by LED blue light in citrus fruit. Food Chemistry, 341: 128050.
16) Bantis, F. 2021. Light Spectrum Differentially Affects the Yield and Phytochemical Content of Microgreen Vegetables in a Plant Factory. Plants, 10(10): 2182.
17) Brand-Williams, W., Cuvelier, M.E. and, C.L.W.T Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1): 25-30.
18) Bradford, MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2): 248-254.
19) Beaudoin-Eagan, L.D. and T.A, Thorpe. 1985. Tyrosine and phenylalanine ammonia lyase activities during shoot initiation in tobacco callus cultures. Plant Physiology, 78(3): 438-441.
20) Bagal, U.R. 2012. Leebens mack JH, Walter Lorenz W and Dean JFD. The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm specific line age. BMC Genoms, 13(3): 1471-2164.
21) Chang, C.C., Yang, M.H., Wen, H.M. and J.C, Chern. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis, 10(3).
22) Clément, G. and K, Slenzka. 2006. Fundamentals of space biology: research on cells, animals, and plants in space. Springer Science & Business Media. (Vol. 18)
23) Çelikel, F.G. and M.S, Reid. 2002. Postharvest handling of stock (Matthiola incana). HortScience, 37(1): 144-147.
24) Dalal, M., Sahu, S., Tiwari, S., Rao, A.R. and K, Gaikwad. 2018. Transcriptome analysis reveals interplay between hormones, ROS metabolism and cell wall biosynthesis for drought-induced root growth in wheat. Plant Physiology and Biochemistry, 130: 482-492.
25) Derakhshan, Z., Ferrante, M., Tadi, M., Ansari, F., Heydari, A., Hosseini, M.S., Conti, G.O. and E.K, Sadrabad. 2018. Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds. Food and chemical toxicology, 114: 108-111.
26) Esmaelpour, S., Iranbakhsh, A., Dilmaghani, K., Marandi, S.J. and Z.O. Ardebili. 2022. The potential contribution of the WRKY53 transcription factor, gamma-aminobutyric acid (GABA) transaminase, and histone deacetylase in regulating growth, organogenesis, photosynthesis, and transcriptional responses of tomato to different light-emitting diodes (LEDs). Journal of Photochemistry and Photobiology B: Biology, 229: 112413.
27) Gulesci, N., Yücebilgic, G. and R, Bilgin. 2021. Review on Evaluation of Physalis peruviana L.’s Antioxidant, Antimicrobial and Biochemical Activities.
28) Gallagher, R.J., Subramanian, C., Grogan, P.T., Kindscher, K., Cao, C.M., Zhang, H., Cohen, M.S. and B.N. Timmermann. 2015. The therapeutic potential of Physalis longifolia against various carcinomas. Pharmanutrition, 3(4): 146-152.
29) Hassanpour, H. and M, Ghanbarzadeh. 2021. Induction of cell division and antioxidative enzyme activity of Matricaria chamomilla L. cell line under clino-rotation. Plant Cell, Tissue and Organ Culture (PCTOC), 146(2): 215-224.
30) Lafuente, M.T., Romero, P. and Ballester, A.R., 2021. Coordinated activation of the metabolic pathways induced by LED blue light in citrus fruit. Food Chemistry, 341: 128050.
31) Bantis, F. 2021. Light Spectrum Differentially Affects the Yield and Phytochemical Content of Microgreen Vegetables in a Plant Factory. Plants, 10(10): 2182.
32) Brand-Williams, W., Cuvelier, M.E. and, C.L.W.T Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1): 25-30.
33) Bradford, MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2): 248-254.
34) Beaudoin-Eagan, L.D. and T.A, Thorpe. 1985. Tyrosine and phenylalanine ammonia lyase activities during shoot initiation in tobacco callus cultures. Plant Physiology, 78(3): 438-441.
35) Bagal, U.R. 2012. Leebens mack JH, Walter Lorenz W and Dean JFD. The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm specific line age. BMC Genoms, 13(3): 1471-2164.
36) Chang, C.C., Yang, M.H., Wen, H.M. and J.C, Chern. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis, 10(3).
37) Clément, G. and K, Slenzka. 2006. Fundamentals of space biology: research on cells, animals, and plants in space. Springer Science & Business Media. (Vol. 18).
38) Çelikel, F.G. and M.S, Reid. 2002. Postharvest handling of stock (Matthiola incana). HortScience, 37(1): 144-147.
39) Dalal, M., Sahu, S., Tiwari, S., Rao, A.R. and K, Gaikwad. 2018. Transcriptome analysis reveals interplay between hormones, ROS metabolism and cell wall biosynthesis for drought-induced root growth in wheat. Plant Physiology and Biochemistry, 130: 482-492.
40) Derakhshan, Z., Ferrante, M., Tadi, M., Ansari, F., Heydari, A., Hosseini, M.S., Conti, G.O. and E.K, Sadrabad. 2018. Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds. Food and chemical toxicology, 114: 108-111.
41) Esmaelpour, S., Iranbakhsh, A., Dilmaghani, K., Marandi, S.J. and Z.O. Ardebili. 2022. The potential contribution of the WRKY53 transcription factor, gamma-aminobutyric acid (GABA) transaminase, and histone deacetylase in regulating growth, organogenesis, photosynthesis, and transcriptional responses of tomato to different light-emitting diodes (LEDs). Journal of Photochemistry and Photobiology B: Biology, 229: 112413.
42) Gulesci, N., Yücebilgic, G. and R, Bilgin. 2021. Review on Evaluation of Physalis peruviana L.’s Antioxidant, Antimicrobial and Biochemical Activities.
43) Gallagher, R.J., Subramanian, C., Grogan, P.T., Kindscher, K., Cao, C.M., Zhang, H., Cohen, M.S. and B.N. Timmermann. 2015. The therapeutic potential of Physalis longifolia against various carcinomas. Pharmanutrition, 3(4): 146-152.
44) Hassanpour, H. and M, Ghanbarzadeh. 2021. Induction of cell division and antioxidative enzyme activity of Matricaria chamomilla L. cell line under clino-rotation. Plant Cell, Tissue and Organ Culture (PCTOC), 146(2): 215-224.
45) Lafuente, M.T., Romero, P. and Ballester, A.R., 2021. Coordinated activation of the metabolic pathways induced by LED blue light in citrus fruit. Food Chemistry, 341: 128050