تاثیر الیسیتورهای قارچی بر غلظت رنگیزه های فتوسنتزی و میزان پرولین نخل خرما رقم استعمران (Phoenix dactylifera L., cv. Stameran) در شرایط تنش شوری
محورهای موضوعی : تنشبیتا صادقی 1 , وحید عبدوسی 2 * , وحید زرین نیا 3 , نادر حسن زاده 4
1 - دانشجوی دکتری، گروه علوم باغی و زراعی، دانشکده کشاورزی و صنایع غذایی ، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - دانشیار، گروه علوم باغی و زراعی، دانشکده کشاورزی و صنایع غذایی ، واحد علوم تحقیقات ، دانشگاه آزاد اسلامی ، تهران ، ایران
3 - استادیار، گروه بیماریشناسی گیاهی، دانشکده کشاورزی و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران،
4 - دانشیار، گروه بیماری شناسی گیاهی، دانشکده کشاورزی و مصنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: تنش, کلروفیل, شوری, قارچ, پرولین,
چکیده مقاله :
شوری آب و خاک یکی از مشکلات جدی و رو به توسعه در سطح جهان است، که سطح وسیعی از اراضی کشور نیـز بـا ایـن مشـکل مواجه هستند. کاربرد میکروارگانیسمهای قارچی در کاهش تنشهـای محیطی مانند شوری، به یک راهکـار جهـانی تبـدیل شـده اسـت. به منظور بررسی ارزیابی تأثیر الیسیتورهای قارچی بر میزان غلظتهای رنگیزههای فتوسنتزی و پرولین در شرایط تنش شوری گیاهچههای خرما رقم استعمران، آزمایشی به صورت فاکتوریل در قالب طرح کاملاً تصادفی با 3 سطح شوری و 3 سطح الیسیتور زیستی در آزمایشگاه علوم باغبانی انجام شد. تاثیر الیسیتورها در 3 سطح کنسرسیوم قارچی (زیست فعال، BFC)، الیسیتور قارچی با غلظت میلیگرم در لیتر1000( EL1)، الیسیتور قارچی با غلظت میلیگرم در لیتر2000( EL2) عامل دوم شوری در سه سطح (صفر، 150 و 300 میلی-مولار) مورد ارزیابی قرارگرفت. نتایج نشان داد که در شوری 300 میلیمولار، الیسیتور قارچ EL1 توانست پرولین را نسبت به سایر سطوح شوری افزایش دهد. الیسیتور قارچ EL2 در سطح شوری 300 میلیمولار کلروفیل a و کل بیشتری را نشان داد و در سطح شوری 150 میلیمولار کنسرسیوم قارچ زنده، کلروفیل a بیشتری را موجب شد. استفاده از الیسیتور در کاهش اثرات تنش شوری در خرما میتواند موثر باشد، اما سطح تنش میتواند تعیین کننده میزان اثر هر الیسیتور باشد.
Water and soil salinity are one of the serious and developing problems in the world, and a large area of the country's land is also facing this problem. The use of fungal microorganisms in reducing environmental stress such as salinity has become a global solution. In order to evaluate the effect of fungal elicitors on the concentrations of photosynthetic pigments and the amount of proline under salinity stress conditions of Otamaran date palm seedlings, a factorial experiment was conducted in the form of a completely randomized design with 3 levels of salinity and 3 levels of biological elicitors in the horticultural science laboratory. became. The effect of elicitors at 3 levels of fungal consortium (bioactive) (BFC), fungal elicitor with 1000 PPM concentration (EL1), fungal elicitor with 2000 PPM concentration (EL2), the second factor of salinity at three levels (zero, 150 and 300 mM) was evaluated. The results showed that at 300 mM salinity, EL1 mushroom elicitor was able to increase proline compared to other salinity levels. EL2 mushroom elicitor showed more chlorophyll a and total at 300 mM salinity level, and at 150 mM salinity level, the live fungus consortium caused more chlorophyll a. The use of elicitor can be effective in reducing the effects of salinity stress in dates, but the level of stress can determine the effect of each elicitor.
1) Aliyar, S. 2021. The Effect of Endophytic Fungus Piriformospora indica on Germination and Growth of Quinoa (Chenopodium quinoa Willd.) under Salinity Stress Conditions. MSc Thesis, Faculty of Agriculture, University of Tabriz.
2) Arnon, A.N. 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal, 23: 112-121.
3) Ashraf, M. and P.J.C, Harris. 2013. Photosynthesis under stressful environments: An overview. Photosynthetica, 51: 163 -190.
4) Bates, L.S., Walderen, R.D. and I.D, Taere. 1973. Rapid determination of free proline for water stress studies. Plant Soil, 39: 205-207.
5) Chauhan, S., Mahawar, S., Jain, D., Udpadhay, S. K., Mohanty, S. R., Singh, A. and E, Maharjan. 2022. Boosting sustainable Agriculture by Arbuscular Mycorrrhiza under stress condition: Mechanism and Future Prospective. BioMed Research International, 3: 1-28.
6) Conlon, B.H., Gostinčar, C., Fricke, J., Kreuzenbeck, N.B., Daniel, J.M., Schlosser, M.S., Peereboom, N., Aanen, D.K., De Beer, Z.W., Beemelmanns, C. and N, Gunde-Cimerman. 2021. Genome reduction and relaxed selection is associated with the transition to symbiosis in the basidiomycete genus Podaxis. iScience, 24: 102680.
7) El Kinany, S., El Hilali, R. and E, Achbani. 2022. Encancement of Date Palm Growth Throw the Use of Organic Fertilizer and Microbial Agents. Journal of Soil Plant Nutrition, 22: 1468-1477.
8) Farakya, S., Julka, A., Mehra, R., Datta, V., Srivastava, A.K. and V.S, Bisaria. 2005. Enhanced production of secondary metabolites by biotic elicitors in plant cell suspension cultures. Presented at 5th Asia Pacific Biochemical Engineering Conference, 15-19.
9) Ghorbani, A., Razavi, S.A., Ghasemi Omran, V.A. and H.A, Pirdashti. 2018. The effect of endophytic fungi symbiosis on some physiological parameters of tomato plant under 10-day salt stress. Plant Process and Function, 7(27): 193-206.
10) Hajinia, S., Zare, M.J., Mohammadi Goltapeh, E. and F, Rejali. 2011. Investigating the efficacy of endophytic fungus Piriformospora indica and Azospirillum strains on alleviation of detrimental effect of salt stress on wheat (Triticum aestivum CV. Sardari). Environmental Stresses in Crop Sciences, 4: 21–31.
11) Hazzouri, K.M., Jonathan, M. and D, Roy Nelson. 2020. Prospects for the Study and Improvent of Abiotic Stress Tolerance in Date Palms in the Post- Genomics Era. Frontiers in Plant Scince. DOI: 10.3389/fpls. 2020. 00293.
12) Indeiragandhi, P., Anandham, R., Madahiyan, M. and T.M, Sa. 2008. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (lepidoptera: plutellidae). National library of Medicine, 56(4): 327-333.
13) Kabiria, M.G. and A, Hoque. 2019. A Review on Plant Responses to soil Salinity and Amelioration Strategies. Oen Journal of Soil Science, 9: 11.
14) Kadian, N., Yadav, K., Badda, N. and A, Aggarwal. 2013. AM fungi ameliorates growth, yield and nutrient uptake in Cicer arietinum L. Under salt stress. Russian Agricultural Sciences, 39: 321 -329.
15) Kushwaha, P., Kashyap, P.L., Bhardwaj, A.K., Kuppusamy, P., Srivastava, A.K. and R.K, Tiwari. 2020. Bacterial endophyte mediated plant tolerance to salinity: growth responses and mechanisms of action. World Journal of Microbiology and Biotechnology, 36(26).
16) Pourghaioomi, MR., Yousefi, R. and H, Dialami. 2020. Management of soil biological factors in Date production. Hand book of Horticulture Science Research Institute, vol 58105.
17) Suenaga, E. and H, Nakamura. 2005. Evaluation of three methods for effective extraction of DNA from human hair. Journal of Chromatography, 820: 137-141.
18) Walsh, P.S., Metzger, D.A. and R, Higuchi. 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechnology, 10: 506-513.
19) Wright, D.P., Read, D. J. and J.D, Scholes. 1998. Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant, Cell and Environment, 21: 881 –891.
20) Zarea, M. J., Hajinia, S., Karimi, N., Mohammadi Goltapeh, E., Rejali, F. and A, Varma. 2012. Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biology and Biochemistry, 45: 139-146.