مستندسازی فرآیند تولید و برآورد خلاء عملکرد برنج با استفاده از روش تحلیل مقایسه کارکرد (CPA) در منطقه ساری
محورهای موضوعی : پژوهش های به زراعیروژین شیخی 1 , هرمز فلاح 2 * , یوسف نیک نژاد 3 , سلمان دستان 4 , داوود براری تاری 5
1 - گروه زراعت، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران
2 - گروه زراعت، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران
3 - گروه زراعت، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران
4 - پژوهشگر، پژوهشگاه بیوتکنولوژی کشاورزی ایران، کرج
5 - گروه زراعت، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران
کلید واژه: برنج, پتانسیل عملکرد, رگرسیون گام به گام, عملکرد واقعی, مدیریت مزرعه ,
چکیده مقاله :
مستندسازي فرآیند تولید در کشاورزي شامل تهیه کلیه اطلاعات و فعالیتهایی است که سیر تولید یک محصول زراعی را از مرحله تهیه بستر بذر تا برداشت نشان میدهد. اولین قدم برای کاهش خلاء عملکرد، مشخص کردن متغیرهای مهم محدودکننده عملکرد است. لذا هدف از مطالعه حاضر مستندسازی فرآیند تولید و برآورد خلاء عملکرد ارقام محلی برنج با استفاده از روش تحلیل مقایسه کارکرد (CPA) بود. در این پژوهش کلیه عملیات مدیریتی انجام شده از مرحله تهیه بستر بذر تا برداشت برای ارقام محلی برنج از طریق مطالعات میدانی در منطقه ساری در 100 مزرعه شالیزاری واقع در استان مازندران طی سالهای 1395 و 1396 با استفاده از پرسشنامه ثبت شد. جهت تعیین مدل عملکرد (تولید)، رابطه بین تمامی متغیرها و عملکرد شلتوک از طریق رگرسیون گام به گام بررسی شد. خلاء عملکرد نیز از تفاضل عملکرد پتانسیل و عملکرد واقعی بهدست آمد. نتایج نشان داد که از حدود 155 متغیر مورد بررسی، مدل نهایی با هشت متغیر مستقل انتخاب شد. متوسط عملکرد واقعی ثبت شده برابر 4221 کیلوگرم در هکتار بود. در معادله تولید، متوسط و حداکثر عملکرد بهترتیب 4437 و 6690 کیلوگرم در هکتار تخمین زده شد که کل خلاء عملکرد تخمین زده شده برابر 2253 کیلوگرم در هکتار بود. سهم متغیرهای سن گیاهچه، تاریخ نشاکاری، تعداد نشا در کپه و برداشت توسط کمباین به ترتیب برابر 104، 224، 534 و 24 کیلوگرم در هکتار سهمی، معادل 5، 10، 24 و 1 درصد از کل خلاء عملکرد را شامل شدند. همچنین، متغیرهای تناوب زراعی، مصرف کود پتاسیم و کود نیتروژن بعد از گلدهی و تعداد دفعات استفاده از کود به صورت سرک به ترتیب با 262، 408، 405 و 292 کیلوگرم در هکتار خلاء عملکرد سهمی معادل 12، 18، 18 و 13 درصد از کل را نشان دادند. بنابراین، بر اساس برازش رابطه بین عملکرد مشاهده شده و عملکرد پیشبینی شده میتوان بیان کرد که دقت مدل رگرسیونی گام به گام (R2=61) مناسب بوده و میتواند برای برآورد میزان خلاء عملکرد و تعیین سهم هر یک از متغیرهای محدود کننده عملکرد بهکار گرفته شود. اگرچه هدف از این پژوهش برآورد میزان خلاء عملکرد برنج در منطقه ساری بوده است و دلایل بهوجود آمدن این میزان خلاء عملکرد نیازمند بررسی و مطالعه بیشتر است، اما محتملترین راهکار که میتواند منجر به افزایش عملکرد و کاهش خلاء عملکرد شود، بهبود مدیریت زراعی در مزارع کشاورزان است.
Documenting the production process in agriculture includes providing all information and activities that show the course of production from the seedbed preparation stage to the harvest stage. Research indicates that the initial stage in decreasing the yield gap is to recognize the significant factors that restrict yield. Therefore, the purpose of this study was to document the production process and estimate the yield gap of local rice cultivars using the Comparative Performance Analysis (CPA) method. In this research, all management operations performed from seedbed preparation stage to harvest stage for local cultivars in 100 paddy fields were recorded. Research was done in 100 paddy fields in the Sari region of Mazandaran province in 2016 and 2017. In order to determine the yield model (production), the relationship between all variables and paddy yield was investigated through step-by-step regression. Yield gap was also obtained from the difference between potential yield and actual yield. The results revealed that of the 155 variables under study, the final model with eight independent variables was chosen. In the yield model, an average and maximum yield were 4437 and 6690 kg ha-1, respectively, and the estimated yield gap was 2253 kg ha-1. The amount of increased yield has been related to seedling age, transplanting date, seedling number per hill, and harvesting by combining variables equals 104, 224, 534, and 24 kg ha-1 includes 5, 10, 24, and 1% of the total yield increase. Moreover, the yield increases related to the effects of crop rotation, potassium usage, nitrogen after flowering, and top-dressing frequency was 262, 408, 405 and 292 kg ha-1 equals 12, 18, 18, and 13%. According to the finding, it is expressed that the model precision is appropriate and can be applied for both estimation of the quantity of the yield gap and determining the portion of each constraint's yield variables. Furthermore, regarding the fact that calculated yield potential is reached through actual data in each paddy field, it has been stated that this yield potential is attainable. While the primary objective of this study was to assess the extent of the rice yield gap in the Sari region, it is important to conduct further investigations and research to understand the underlying causes of this yield gap. However, the most plausible solution for increasing yield and minimizing the yield gap appears to be enhancing crop management practices in farmers' fields.
آمارنامه کشاورزی. 1395. وزارت جهاد کشاورزی، معاونت برنامهریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات. جلد اول: محصولات زراعی، 163 صفحه.
ترابی، ب.، ا. سلطانی، س. گالشی، ا. زینلی، و م. کاظمیکرگهی. 1392. اولویتبندی عوامل ایجاد کننده خلاء عملکرد گندم در منطقه گرگان. مجله تولید گیاهان زراعی، 6 (1): 171-189.
حقشناس، ح.، ا. سلطانی، ع. قنبری، ح. عجم نوروزی، و س. دستان. 1397. شناسایی صفات زراعی مؤثر بر عملکرد ارقام بومی برنج با استفاده از مدلهاي رگرسیون چندگانه. مجله کشاورزی بومشناختی، 8 (2): 13-28.
حلالخور، س.، س. دستان، ا. سلطانی، و ح. عجم نوروزی. 1397. مستندسازی فرآیند تولید و برآورد خلأ عملکرد مرتبط با مدیریت زراعی ارقام بومی برنج (مطالعه موردی: استان مازندران- منطقه بابل). مجله بهزراعی کشاورزی، 20 (2): 397-414.
گرجیزاد، ا.، س. دستان، ا. سلطانی، و ح. عجم نوروزی. 1398. مستندسازی فرآیند تولید و تحلیل عوامل محدودکننده عملکرد ارقام اصلاحشده برنج (Oryza sativa L.) به روش CPA در منطقه نکا. مجله بوم شناسی کشاورزی، 11 (1): 277-294.
Beza, E., J. Vasco Silva, L. Kooistra, and P. Reidsma. 2017. Review of yield gap explaining factors and opportunities for alternative data collection approaches. Eur. J. Agron, 82: 206-222.
De Bie, C.A.J.M. 2000. Yield gap studies through comparative performance analysis of agro-ecosystems. International Institute for Aerospace and Earth Science (ITC), Enschede. The Netherlands, 234 p.
Delmotte, S., P. Tittonell, J.C. Moureta, R. Hammonda, and S. Lopez-Ridaura. 2011. On farm assessment of rice yield variability and productivity gaps between organic and conventional cropping systems under Mediterranean climate. Eur. J. Agron, 35: 223-236.
Espe, M.B., H. Yang, K.G. Cassman, N. Guilpart, H. Sharifi, and B.A. Linquist. 2016a. Estimating yield potential in temperate high-yielding, direct-seeded US rice production systems. Field Crops Res, 193: 123-132.
Espe, M.B., K.G. Cassman, H. Yang, N. Guilpart, P. Grassini, J. Van Wart, M. Anders, D. Beighley, D. Harrell, S. Linscombe, K. McKenzie, R. Mutters, L.T. Wilson, and B.A. Linquist. 2016b. Yield gap analysis of US rice production systems shows opportunities for improvement Matthew. Field Crops Res, 196: 276-283.
FAO. 2016. Faostat-Trade/Crops and livestock products, available in http://faostat3.fao.org/browse/T/TP/E [15 April 2016].
Hochman, Z., D. Gobbett, D. Holzworth, T. McClelland, H. Van Rees, O. Marinoni, K.N. Garcia, and H. Horan. 2013. Reprint of Quantifying yield gaps in rain-fed cropping systems: A case study of wheat in Australia. Field Crops Res, 143: 65-75.
Kayiranga, D. 2006. The effects of land factors and management practices on rice yields. International Institute for Geo-Information Science and Earth Observation Enscheda (ITC). The Netherlands.72 p.
Lobell, D.B., K.G. Cassman, and C.B. Field. 2009. Crop yield gaps: their importance, magnitudes, and causes. Annu. Rev. Environ. Resour, 34: 179-204.
Liu, Z., X. Yang, X. Lin, K.G. Hubbard, S. Lv, and J. Wang. 2016. Narrowing the agronomic yield gaps of maize by improved soil, cultivar, and agricultural management practices in different climate zones of northeast China. Earth Interact, 20: 1-18.
Mueller, N.D., J.S. Gerber, M. Johnston, D.K. Ray, N. Ramankutty, and J.A. Foley. 2012. Closing yield gaps through nutrient and water management. Nature, 490: 254-257.
Reidsma, P., and H. Jeuffroy. 2017. Farming systems analysis and design for sustainable intensification: new methods and assessments. Eur. J. Agron, 82: 203-205.
Silva, J.V., P. Reidsma, A.G. Laborte, and M.K. Van Ittersum. 2017. Explaining rice yields and yield gaps in Central Luzon, Philippines: An application of stochastic frontier analysis and crop modeling. Eur. J. Agron, 82: 223-241.
Soltani, A., A. Hajjarpoor, and V. Vadez. 2016. Analysis of chickpea yield gap and water-limited potential yield in Iran. Field Crops Res, 185: 21-30.
Tanaka, A., K. Saito, K. Azoma, and K. Kobayashi. 2013. Factors affecting variation in farm yields of irrigated lowland rice in southern-central Benin. European J. Agron, 44: 46-53.
Tanaka, A., M. Diagne, and K. Saito. 2015. Causes of yield stagnation in irrigated lowland rice systems in the Senegal River Valley: Application of dichotomous decision tree analysis. Field Crops Res, 176: 99-107.
Van Ittersum, M.K., K.G. Cassman, P. Grassini, J. Wolf, P. Tittonell, and Z. Hochman. 2013. Yield gap analysis with local to global relevance-A review. Field Crops Res, 143: 4-17.
Van Wart, J., K.C. Kersebaum, S. Peng, M. Milner, and K.G. Cassman. 2013. Estimating crop yield potential at regional to national scales. Field Crops Res, 143: 34-43.
Xu, X., P. He, S. Zhaoa, S. Qiua, A.M. Johnstond, and W. Zhou. 2016. Quantification of yield gap and nutrient use efficiency of irrigated rice in China. Field Crops Res, 186: 58-65.