اثرات استفاده از اسیدهای چرب امگا- 3، امگا-6 و مخلوط آنها بر عملکرد، شاخصهای اسکلتی و سلامت در گوسالههای شیرخوار هلشتاین
محورهای موضوعی : فصلنامه زیست شناسی جانوری
اسماعیل سنگین
1
,
علی نیکخواه
2
,
محمد چمنی
3
*
,
علی اصغر صادقی
4
,
مهدی امین افشار
5
1 - گروه علوم دامی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه علوم دامی دانشگدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران
3 - گروه علوم دامی، دانشکده علوم کشاورزی و صنایع غذایی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران.
4 - گروه علوم دامی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
5 - گروه کشاورزی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: اسیدهای چرب امگا-6 و امگا-3, رشد اسکلتی, سلامت, عملکرد, گوساله¬های شیرخوار,
چکیده مقاله :
این مطالعه بهمنظور بررسی اثرات استفاده از اسیدهای چرب امگا- 3، امگا-6 و مخلوط آنها بر عملکرد، شاخصهای اسکلتی و سلامت در گوسالههای شیرخوار هلشتاین بود. تعداد 56 رأس گوساله شیرخوار (نر و ماده) با میانگین وزن بدن 5/1±38 کیلوگرم انتخاب و بهصورت طرح کاملاً تصادفی به چهار گروه آزمایشی شامل 1) شاهد (فاقد روغن)؛ 2) روغن سویا + شیر؛ 3) روغن ماهی + شیر؛ و 4) ترکیب روغن سویا و روغن ماهی + شیر تقسیم شدند. شروع آزمایش 3 روزگی، از شیرگیری 75 روزگی و پایان دوره 80 روزگی بود. مصرف خوراک (استارتر + شیر) و افزایش وزن بدن بهصورت روزانه برای هر گوساله بهصورت مجزا انجام گردید. سنجش فاکتورهاي رشد به وسیله مترسنج استاندارد در روزهای 3، 75 و 85ام پرورش انجام شد و اسکور مدفوع و اسکور شادابی براساس شکل ظاهری (1 تا 5) بررسی و ثبت گردید. نتایج نشان داد مصرف خوراک و مصرف ماده خشک شیر با افزودن اسیدچرب امگا-3 و امگا-6 در بین گروههای آزمایشی تغییر معنیداری نداشت (05/0<P). تفاوت معنیدار از نظر میانگین افزایش وزن روزانه و وزن بدن گوسالهها نسبت به تیمار شاهد مشاهده نشد (05/0<P)، اما افزایش وزن روزانه برای روغن سویا بیشتر از روغن ماهی بود. بازده استفاده از خوراک برای گروههای آزمایشی تحت تأثیر تیمارهای آزمایشی نبود (05/0<P). شاخصهای اسکلتی اندازهگیری شده در این آزمایش بهطور معنیدار تحت تأثیر تیمارهای آزمایشی قرار نگرفتند (05/0<P). شاخصهای سلامت اعم از اسکور مدفوع و اسکور شادابی تحت تاثیر تیمارهای آزمایشی نبودند (05/0<P). نتايج حاصل از اين تحقيق نشان داد استفاده از اسیدهای چرب اشباع نشده چندگانه روغن سویا و روغن ماهی نه تنها هیچ تأثیر سوئی بر عملکرد گوسالهها نداشت، بلکه منجر به بهبود برخی از فاکتورهای رشد و وزن بدن نیز شد.
This study aimed to investigate the effects of using omega-3, omega-6 fatty acids and their mixtures on performance, skeletal indices and health in Holstein calves. 56 suckling calves (male and female) with an average body weight of 38±1.5 kg were selected and divided into four experimental groups in a completely randomized design: 1) control (oil-free); 2) soybean oil + milk; 3) fish oil + milk; and 4) combination of soybean oil and fish oil + milk. The experiment began at 3 days of age, weaning was at 75 days of age, and the end of the period was at 80 days of age. Feed intake (starter + milk) and body weight gain were recorded daily for each calf separately. Growth factors were measured using a standard meter on days 3, 75, and 85 of rearing, and stool scores and vitality scores were assessed and recorded based on appearance (1 to 5). The results showed that feed intake and milk solids intake did not change significantly among the experimental groups with the addition of omega-3 and omega-6 fatty acids (P<0.05). No significant difference was observed in the average daily weight gain and body weight of calves compared to the control treatment (P<0.05), but daily weight gain was greater for soybean oil than for fish oil. Feed Intake efficiency for the experimental groups was not affected by the experimental treatments (P<0.05). Skeletal indices measured in this experiment were not significantly affected by the experimental treatments (P<0.05). Health indicators, including stool score and vitality score, were not affected by experimental treatments (P<0.05).
1. Calder, P.C., 2008. The relationship between the fatty acid composition of immune cells and their function. Prostaglandins, Leukotrienes and Essential Fatty Acids, 79(3-5), pp.101-108.
2. Ballou, M.A., Cruz, G.D., Pittroff, W., Keisler, D.H. and DePeters, E.J., 2008. Modifying the acute phase response of Jersey calves by supplementing milk replacer with omega-3 fatty acids from fish oil. Journal of Dairy Science, 91(9), pp.3478-3487.
3. Garcia, M., Greco, L.F., Lock, A.L., Block, E., Santos, J.E.P., Thatcher, W.W. and Staples, C.R., 2016. Supplementation of essential fatty acids to Holstein calves during late uterine life and first month of life alters hepatic fatty acid profile and gene expression. Journal of Dairy Science, 99(9), pp.7085-7101.
4. Ghorbani, H., Kazemi-Bonchenari, M., HosseinYazdi, M. and Mahjoubi, E., 2020. Effects of various fat delivery methods in starter diet on growth performance, nutrients digestibility and blood metabolites of Holstein dairy calves. Animal Feed Science and Technology, 262, p.114429.
5. Hill, T.M., Bateman II, H.G., Aldrich, J.M. and Schlotterbeck, R.L., 2011. Effect of various fatty acids on dairy calf performance. The Professional Animal Scientist, 27(3), pp.167-175.
6. Masmeijer, C., 2019. A Fat chance for calves: influence of dietary supplemented fatty acids on immune, health and production variables in stressed calves (Doctoral dissertation, Ghent University). Pages 55-58.
7. Karcher, E.L., Hill, T.M., Bateman II, H.G., Schlotterbeck, R.L., Vito, N., Sordillo, L.M. and VandeHaar, M.J., 2014. Comparison of supplementation of n-3 fatty acids from fish and flax oil on cytokine gene expression and growth of milk-fed Holstein calves. Journal of dairy science, 97(4), pp.2329-2337.
8. McNiven, M.A., Duynisveld, J.L., Turner, T. and Mitchell, A.W., 2011. Ratio of n-6/n-3 in the diets of beef cattle: Effect on growth, fatty acid composition, and taste of beef. Animal feed science and technology, 170(3-4), pp.171-181.
9. Kazemi-Bonchenari, M., Mirzaei, M., Jahani-Moghadam, M., Soltani, A., Mahjoubi, E. and Patton, R.A., 2016. Interactions between levels of heat-treated soybean meal and prilled fat on growth, rumen fermentation, and blood metabolites of Holstein calves. Journal of animal science, 94(10), pp.4267-4275.
10. National Research Council, Committee on Animal Nutrition and Subcommittee on Dairy Cattle Nutrition, 2001. Nutrient requirements of dairy cattle: 2001. National Academies Press.
11. Khan, M.A., Lee, H.J., Lee, W.S., Kim, H.S., Ki, K.S., Hur, T.Y., Suh, G.H., Kang, S.J. and Choi, Y.J., 2007. Structural growth, rumen development, and metabolic and immune responses of Holstein male calves fed milk through step-down and conventional methods. Journal of dairy science, 90(7), pp.3376-3387.
12. Larson, L.L., Owen, F.G., Albright, J.L., Appleman, R.D., Lamb, R.C. and Muller, L.D., 1977. Guidelines toward more uniformity in measuring and reporting calf experimental data. Journal of Dairy Science, 60(6), pp.989-991.
13. Fasihi, H., Khorosh, M. 2012. Investigating the interaction effect of the ratio of omega-6 to omega-3 fatty acids with different levels of vitamin E in starter feed on the performance and immunological responses of Holstein calves. Master's Thesis in Animal Sciences, Isfahan University, pages 36-40.
14. Rajabi, A., Fatahnia, F., Kazemi-Benchanari, M., Shams-Elahi, M., Jahani Azizabadi, H. 1400. The interaction effect of type of fatty acid (omega-6 or omega-3) and crude protein level of starter diet on growth performance, blood parameters in Holstein weanling calves, master's thesis in animal science, Ilam University, pp. 29-34.
15. Kazemi-Bonchenari, M., Dehghan-Banadaky, M., Fattahnia, F., Saleh-Bahmanpour, A., Jahani-Moghadam, M. and Mirzaei, M., 2020. Effects of linseed oil and rumen undegradable protein: rumen degradable protein ratio on performance of Holstein dairy calves. British Journal of Nutrition, 123(11), pp.1247-1257.
16. Yousefinejad, S., Fattahnia, F., Kazemi-Bonchenari, M., Khanaki, H., Drackley, J.K. and Ghaffari, M.H., 2021. Soybean oil supplementation and starter protein content: Effects on growth performance, digestibility, ruminal fermentation, and urinary purine derivatives of Holstein dairy calves. Journal of Dairy Science, 104(2), pp.1630-1644.
17. McDonnell, R.P., O’Doherty, J.V., Earley, B., Clarke, A.M. and Kenny, D.A., 2019. Effect of supplementation with n-3 polyunsaturated fatty acids and/or β-glucans on performance, feeding behaviour and immune status of Holstein Friesian bull calves during the pre-and post-weaning periods. Journal of Animal Science and Biotechnology, 10, pp.1-17.
18. Quigley, J.D., Hill, T.M., Hulbert, L.E., Dennis, T.S., Suarez-Mena, X.F. and Bortoluzzi, E.M., 2019. Effects of fatty acids and calf starter form on intake, growth, digestion, and selected blood metabolites in male calves from 0 to 4 months of age. Journal of dairy science, 102(9), pp.8074-8091.
19. Hill, T.M., Quigley, J.D., Suarez-Mena, F.X., Bateman II, H.G. and Schlotterbeck, R.L., 2016. Effect of milk replacer feeding rate and functional fatty acids on dairy calf performance and digestion of nutrients. Journal of Dairy Science, 99(8), pp.6352-6361.
20. Mohtashami, B., Khalilvandi-Behroozyar, H., Pirmohammadi, R., Dehghan-Banadaky, M., Kazemi-Bonchenari, M., Dirandeh, E. and Ghaffari, M.H., 2022. The effect of supplemental bioactive fatty acids on growth performance and immune function of milk-fed Holstein dairy calves during heat stress. British Journal of Nutrition, 127(2), pp.188-201.
21. Klopp, R.N., Franco, J.F.H., Hogenesch, H., Dennis, T.S., Cowles, K.E. and Boerman, J.P., 2022. Effect of medium-chain fatty acids on growth, health, and immune response of dairy calves. Journal of Dairy Science, 105(9), pp.7738-7749.
22. Wistuba, T.J., Kegley, E.B., Apple, J.K. and Davis, M.E., 2005. Influence of fish oil supplementation on growth and immune system characteristics of cattle. Journal of animal science, 83(5), pp.1097-1101.
23. Lewis, G.S., Wulster-Radcliffe, M.C. and Herbein, J.H., 2008. Fatty acid profiles, growth, and immune responses of neonatal lambs fed milk replacer and supplemented with fish oil or safflower oil. Small Ruminant Research, 79(2-3), pp.167-173.
24. Hristov, A.N., Kennington, L.R., McGuire, M.A. and Hunt, C.W., 2005. Effect of diets containing linoleic acid-or oleic acid-rich oils on ruminal fermentation and nutrient digestibility, and performance and fatty acid composition of adipose and muscle tissues of finishing cattle. Journal of Animal Science, 83(6), pp.1312-1321.
25. Kapoor, B., Kapoor, D., Gautam, S., Singh, R. and Bhardwaj, S., 2021. Dietary polyunsaturated fatty acids (PUFAs): Uses and potential health benefits. Current nutrition reports, 10, pp.232-242.
26. Dimitrova, R., 2020, December. Bone and insulin resistance-a literature review. In Varna Medical Forum (Vol. 9, No. 2, pp. 78-88).
27. Garcia, M., Greco, L.F., Lock, A.L., Block, E., Santos, J.E.P., Thatcher, W.W. and Staples, C.R., 2016. Supplementation of essential fatty acids to Holstein calves during late uterine life and first month of life alters hepatic fatty acid profile and gene expression. Journal of Dairy Science, 99(9), pp.7085-7101.
28. Kadkhoday, A., Riasi, A., Alikhani, M., Dehghan-Banadaky, M. and Kowsar, R., 2017. Effects of fat sources and dietary C18: 2 to C18: 3 fatty acids ratio on growth performance, ruminal fermentation and some blood components of Holstein calves. Livestock Science, 204, pp.71-77.