الگوی تجمع زیستی فلزات سنگین جیوه، روی و نیکل در بافتهای نرم خرچنگ شناگر آبی (Portunus segnis) در سواحل مکُّران
محورهای موضوعی : فصلنامه زیست شناسی جانوریسمانه ابراهیمی 1 , محمدمنصور توتونی 2 , مهران لقمانی لقمانی 3 *
1 - گروه زیست شناسی دریا، دانشکده علوم دریایی، دانشگاه دریانوردی و علوم دریایی چابهار، چابهار، ایران
2 - گروه زیست شناسی دریا، دانشکده علوم دریایی، دانشگاه دریانوردی و علوم دریایی چابهار، چابهار، ایران
3 - گروه زیست شناسی دریا، دانشکده علوم دریایی، دانشگاه دریانوردی و علوم دریایی چابهار، چابهار، ایران
کلید واژه: فلزات سنگین, خرچنگ شناگر آبی, سواحل مکران, هپاتوپانکراس,
چکیده مقاله :
با توجه به افزایش میزان آلودگی فلزات سنگین و تأثیر آنها بر محیط زیست، هدف مطالعه حاضر ارزیابی تجمع زیستی فلزات سنگین جیوه، روی و نیکل در بافتهای نرم (عضله و هپاتوپانکراس) خرچنگ شناگر آبی (Portunus segnis) در سواحل مکران (بریس، پزم و تیس) بود. هجده نمونه خرچنگ و 9 نمونه رسوب سطحی در زمستان 1399 جمعآوری و غلظت فلزات جیوه، روی و نیکل در بافتهای هپاتوپانکراس و عضله خرچنگ و رسوبات مناطق نمونهبرداری توسط دستگاه جذب اتمی اندازهگیری شد. در هر سه ایستگاه، غلظت فلز روی در هپاتوپانکراس بیش از عضله بود و اختلاف آماری معنیداری بین تمام ایستگاهها وجود داشت (05/0p < ). میانگین کلی تجمع فلزات جیوه، روی و نیکل بر حسب میلیگرم/کیلوگرم در هپاتوپانکراس به ترتیب، 7/0 ± 85/0، 41/101 ± 81/240 و 58/33 ± 24/69؛ در عضله 04/0 ± 37/0، 02/14 ± 45/78 و 12/9 ± 01/33 و در رسوب 6/0 ± 96/0، 45/14 ± 4/26 و 21/6 ± 49/21 بود. الگوی تجمع فلزات سنگین در بافت و رسوب به صورت جیوه< نیکل< روی به دست آمد. مقایسه غلظت فلزات در عضله خرچنگ شناگر آبی منطقه مورد مطالعه با استانداردهای بینالمللی UK MAFF)، FDA، NHMRC،WHO و (FAO نشان داد که غلظت جیوه، پایینتر از استاندارد NHMRC و نزدیک به سایر استانداردها، غلظت روی در مقایسه با فقط بعضی از استانداردها بالاتر از حد مجاز بوده و غلظت نیکل نیز کمتر از حد مجاز اعلام شده توسط FDA بود. بنابراین، مصرف گوشت خرچنگ مورد مطالعه از نظر جیوه و به ویژه، روی ممکن است برای سلامتی مضر باشد. مقایسه میانگین غلظت فلزات سنگین در رسوبات نمونهبرداری شده از ایستگاهها با استانداردهای کیفیت رسوب، نشان از پایین بودن غلظت روی و نیکل و جیوه داشت.
The aim of the present study, considering the increasing level of heavy metal pollution and their impact on the environment, was to evaluate the bioaccumulation of heavy metals mercury, zinc and nickel in soft tissues (muscle and hepatopancreas) of the blue swimming crab (Portunus segnis) on the coasts of Makoran (Bris, Pesem and Tis). 18 crab samples and 9 surface sediment samples were collected in the winter of 2019 and the concentrations of mercury, zinc and nickel in the hepatopancreas and muscle tissues of the crab and sediments of the sampling areas were measured by atomic absorption spectrometry. In all three stations, the concentration of zinc in the hepatopancreas was higher than in the muscle and there was a statistically significant difference between all stations (p < 0.05). The overall average accumulation of mercury, zinc and nickel metals in mg/kg in hepatopancreas was 0.85 ± 0.7, 240.81 ± 101.41 and 69.24 ± 33.58 in muscle 0.37 ± 0.04, 78.45 ± 14.02 and 33.01 ± 9.12 and in sediment 0.96 ± 0.6, 26.4 ± 14.45 and 21.49 ± 6.21. The pattern of heavy metal accumulation in tissue and sediment was obtained as mercury < nickel < zinc. Comparison of metal concentrations in the muscle of the blue-swimming crab of the study area with international standards (UK MAFF, FDA, NHMRC, WHO and FAO) showed that the mercury concentration was lower than the NHMRC standard and close to other standards, the zinc concentration was higher than the permissible limit compared to only some standards, and the nickel concentration was lower than the permissible limit announced by the FDA. Therefore, the consumption of the studied crab meat in terms of mercury and especially zinc may be harmful to health. Comparison of the average concentration of heavy metals in sediments sampled from the stations with sediment quality standards showed low concentrations of zinc, nickel and mercury.
1. Agah H, Saleh A, Darvish Bastami K, Sheijooni Fumani N. Ecological risk, source and preliminary assessment of metals in the surface sediments of Chabahar Bay, Oman Sea. Mar Pollut Bull. 2016;107(1):383-388.
2. Viswanathan C, Azhaguraj R, Selvanayagam M, Raffi SM. Heavy metal levels in different tissues of the Blue Swimming crab (Portunus pelagicus, Portunidae) collected from Ennore Estuary. Int J Res Fish Aquac. 2013;3(1):1-6.
3. Satheeswaran T, Yuvaraj P, Damotharan P, Karthikeyan V, Jha DK, Dharani G, Balasubramanian T, Kirubagaran R. Assessment of trace metal contamination in the marine sediment, seawater, and bivalves of Parangipettai, southeast coast of India. Mar Pollut Bull. 2019;149:110499.
4. Olgunoglu MP, Olgunoglu İA. Heavy metal contents in blue swimming crab from the Northeastern Mediterranean Sea, Mersin Bay, Turkey. Pol J Environ Stud. 2016;25(5):2233-2237.
5. Barath Kumar S, Padhi RK, Mohanty AK, Satpathy KK. Elemental distribution and trace metal contamination in the surface sediment of south east coast of India. Mar Pollut Bull. 2016;114(2):1164-1170.
6. Çoğun HY. Firat Ö. Aytekin T. Firidin G, Firat Ö, Varkal H, Temiz Ö, Kargin F. Heavy metals in the blue crab (Callinectes sapidus) in Mersin Bay, Turkey. Bull Environ Contamination Toxicol. 2017;98(6):824-829.
7. Nanda PK, Da AK, Dandapat P, Dhar P, Bandyopadhyay S, Dib AL, Lorenzo JM, Gagaoua M. Nutritional aspects, flavour profile and health benefits of crab meat based novel food products and valorisation of processing waste to wealth: A review. Trends Food Sci Technol. 2021;112:252-267.
8. Fatemi F, Khoramnezhadian S, Shamsaei Mehrenjan M. 2015. Bioaccumulation of arsenic in blue swimmer crab (Portunus pelagicus) along the Persian Gulf coasts, Asalouyeh region-3. J Mar Biol. 7(1):43-52
9. Soltani Z, Loghmani M, Toutouni MM, Sinaei M. Study of changes in metallothionein concentration of ghost crab (Ocypode saratan) in Gwater and Chabahar mangrove forests in two periods of pre-monsoon and post-monsoon. J Food Sci Technol. 2020;9(4):257-270.
10. Taleshpour S, Taghavi L, Nasrollahzadeh Saravi H. Prioritizing the amount of metal pollution using pollution load indices and biological hazard potential in surface sediments of rivers on the southeastern coast of the Caspian Sea. Environ Sci Technol. 2020;22(6):17-30.
11. Abkenar AM, Yahyavi M, Esmaeili M, Rombenso A. High bioaccumulation factors and ecological risk index of Cd and Hg in Indian white shrimp, hooded oyster, brown algae, and Sediment in northern coasts of the Gulf of Oman before and after a monsoon. Reg Stud Mar Sci. 2020;41:101552.
12. Talebi Matin M, Mashinchian A, Sinaei M, Jamili S. Metallothionein as a biomarker of heavy metal (Cd, Cu, Zn, Pb, Hg, Ni, Cr) pollution in hermit crab (Clibanarius signatus). Environ Asia. 2019;12(2):164-171.
13. Ghaeni M, Adami Pou N, Hosseini M. Bioaccumulation of polychlorinated biphenyl (PCB), polycyclic aromatic hydrocarbon (PAH), mercury, methyl mercury, and arsenic in blue crab Portunus segnis from Persian Gulf. Environ Monit Assess. 2015;187(5):253-261.
14. Kazemzadeh Khoei J, Abdi Bastami A. Mercury concentrations in tissues of blue swimming crab Portunus pelagicus and sediments from Khark Island. World Appl Sci J. 2013;21(9):1391-1397.
15. Al-Mohanna SY, Subrahmanyam M NV. Flux of heavy metal accumulation in various organs of the intertidal marine blue crab, Portunus pelagicus (L.) from the Kuwait coast after the Gulf War. Environ Int. 2001;27(4):321-326.
16. Fırat Ö, Gök G, Çoğun HY, Yüzereroğlu TA, Kargin F. Concentrations of Cr, Cd, Cu, Zn, and Fe in crab Charybdis longicollis and shrimp Penaeus semisulcatus from the Iskenderun Bay, Turkey. Environ Monit Assess. 2008;147(1-3):117-123.
17. Genc TO, Yilmaz F. Bioaccumulation [indices] of metals in blue crab inhabiting specially protected area Koycegiz Lagoon (Turkey). Indian J Anim Sci. 2015;85(1):94-99.
18. Celik M, Küçükgülmez A, Yanar Y, Çıkrıkçı M. Concentrations of some heavy metals in tissues of the blue crab, Callinectes sapidus, from the lagoon of the North Eastern Mediterranean Sea. Fresenius Environ Bull. 2006;15(5):351-355.
19. Hosseini M, Pazooki J, Safaei M. Size at maturity, sex ratio and variant morphometrics of blue swimming crab Portunus segnis (Forskal, 1775) from Boushehr Coast (Persian Gulf). J Mar Sci: Res Dev. 2014;4(2):149-153.
20. Food and Drug Administration – FDA. Guidance document for nickel in shellfish. Washington, D.C.: DHHS/PHS /FDA/CFSAN/Office of Seafood. 1993.
21. WHO. Health criteria and other supporting information. In: Guidelines for Drinking Water Quality, 2nd ed., Geneva. 1996;2:31-388.
22. Balooch A, Sadeghi P, Attaran Fariman G. Evaluation of copper and zinc contamination in Otolithes ruber and sediments of the Pozm Bay (north of Oman Sea): Histopathology and chemical analysis. J Persian Gulf, 2018;9(31):21-31.
23. Delshab H, Farshchi P, Keshavarzi B. Geochemical distribution, fraction ation and contamination assessment of heavy metals in marine sediments of the Asaluyeh port, Persian Gulf. Mar Pollut Bull., 2017;115(1-2):401-411.
24. Dehghan Madiseh S, Savari A, Parham H, Marammazy JG, Papahn F, Sabzalizadeh S. Heavy metals contaminant evaluation in sediments of Khour-e-Musa creeks, northwest of Persian Gulf. Iranian J Fish Sci. 2008;7(2):137-156.
25. Hamzeh MA, Shah-Hosseini M, Naderi Beni A. Effect of fishing vessels on trace metal contamination in sediments of three harbors along Iranian Oman Sea coast[s]. Environ Monit Assess. 2013;185(2):1791-1807.
26. Song Y, Choi MS, Lee JY, Jang DJ. Regional background concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb) in coastal sediments of the South Sea of Korea. Sci Total Environ. 2014;482-483:80-91.
27. Zhou J, Ma D, Pan J, Nie W, Wu K. Application of multivariate statistical approach to identify heavy metal sources in sediment and waters: a case study in Yangzhong, China. Environ Geol. 2008;54(2):373-380.
28. Agah H. Ecological risk assessment of heavy metals in sediment, fish, and human hair from Chabahar Bay, Makoran, Iran. Mar Pollut Bull. 2021;169(5):112345.
29. Abdolahpour Monikh F, Safahieh A, Savari A, Doraghi A. Heavy metal concentration in sediment, benthic, benthopelagic, and pelagic fish species from Musa Estuary (Persian Gulf). Environ Monitor Assess. 2013;185(1):215-222.
30. Pandiyan J, Mahboob S, Govindarajan M, Al-Ghanim KA, Ahmed Z, Al-Mulhm N, Jagadheesan R, Krishnappa K. An assessment of level of heavy metals pollution in the water, sediment and aquatic organisms: A perspective of tackling environmental threats for food security. Saudi J Biol Sci. 2020;28(2):1218-1225.
31. Sadeghi P, Loghmani M, Afsa E. Trace element concentrations, ecological and health risk assessment in sediment and marine fish Otolithes ruber in Oman Sea, Iran. Mar Pollut Bull. 2019;140(1):248-254.
32. Govind P, Madhuri S. Heavy metals causing toxicity in animals and fishes. Res J Anim Vet Fish Sci. 2014;2(2):17-23.
33. Mirza R, Moeinoddini M. Contamination and ecological assessment of heavy metals (Hg, Cd, Pb, Ni, V, Cu) in surface sediments of Chabahar Bay. J Oceanogr. 2017;8(31):1-9.