تاثیر اقلیم در پیش بینی منحنی تولید شیر گاو با شبکه عصبی مصنوعی
محورهای موضوعی : فصلنامه زیست شناسی جانورینیلوفر راستی دوست 1 * , ناصر امام جمعه کاشان 2 , سونیا زکی زاده 3 , علی اصغر صادقی 4 , رضا عزیزی نژاد 5
1 - گروه علوم دامی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه علوم دامی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - موسسه تحقیقات علوم دامی کشور، سازمان تحقیقات، آموزش و ترویح کشاورزی، کرج، ایران
4 - گروه علوم دامی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
5 - گروه علوم دامی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: شیر, شبکه عصبی, منحنی شیر, اقلیم, روز آزمون,
چکیده مقاله :
هدف پژوهش حاضر بررسی تاثیر تغییرات اقلیم بر منحنی تولید شیر و درصد چربی و میزان تغییرات شیر گاوهای هلشتاین در اقلیمهای گوناگون از هفت استان میباشد. بدین منظور از 70000 رکورد روزآزمون مربوط به 22471 راس گاو هلشتاین طی سال های 1380 تا 1395 گردآوری شده بودند استفاده شد. با استفاده از داده های نزدیکترین ایستگاه سینوپتیک شاخص رطوبت دما اقلیمی با استفاده از دما و رطوبت نسبی هوا محاسبه و مقایسه شد. بدلیل امکان اثر گذاری بیشتر دورههای طولانی تر تنش گرمایی نسبت به دورههای کوتاه تر، میانگین اطلاعات هواشناسی دورههای 1، 2 و 3 روزه نیز محاسبه شدند. بطور کلی تغییرات ناشی از اقلیم گوناگون از طریق شبکهسازی مصنوعی با استفاده از نرمافزار نوروسلوشن محاسبه شد. نکویی برازشها با استفاده از آمارههای ضریب همبستگی r و میانگین مربعات خطای مدل MSE تعیین شد. بر اساس نتایج با داشتن شاخص رطوبت دما به عنوان بهترین معیار جهت بررسی شرایط اقلیمی منطقه مورد مطالعه تعیین گردید. همچنین مشاهده شد که متوسط دما رطوبت نسبی دو روز قبل از رکوردگیری میتواند سهم بیشتری از تغییرات عملکرد تولیدی را نسبت به تنها در روز رکوردگیری توضیح دهد. نتایج این تحقیق نشان داد افزایش مقدارTHI باعث کاهش تولید شیر و افزایش درصدچربی شیر میشود.
The aim of the current research is to investigate the effect of climate change on the milk production curve and fat percentage and fat percentage and the rate of milk changes of Holstein cows in different climates from seven provinces. For this purpose, 70,000 test day records related to 22,471 Holstein cows were collected during the years 2001 to 2016. Using data from the nearest synoptic station, the climate temperature humidity index was calculated and compared using temperature and relative humidity. Due to the possibility of greater impact of longer periods of heat stress compared to shorter periods, the average of 1, 2 and 3 day were also calculated. In general, the changes caused by different climates were calculated through artificial networking using Neurosolution software. In general, the changes caused by different climates were calculated through artificial networking using Neurosolution software. The goodness of fit was determined using the coefficient of explanation r and the mean square error of the MSE model. Based on the results, the temperature humidity index (THI) was determined as the best criterion to investigate the climatic conditions of the studied area. Based on the results, the humidity and temperature index was determined as the best criterion to investigate the climatic conditions of the studied area. It has also been observed that the average temperature and relative humidity 2 days before recording can explain a greater share of the changes in production performance than on the day of recording alone. The results of this study showed that increasing the THI value reduced milk production and increased milk fat percentage.
1. Arbib M.A. 2003. The handbook of brain theory and neural networks. MIT Press, Cambridge, MA.
2. Bauer E.A. 2022. Progressive trends on the application of artificial neural networks in animal sciences -A review. Veterinarni Medicina, 67(05):219-230.
3. Bernabucci U., Calamari L. 1998. Effect of heat stress on bovine milk yield and composition. Zootec Nutrition in Animals, 24:247-257.
4. Bernabucci U., Basirico L., Morera P. 2013. Impact of hot enviroment on colostum and milk composition. Cellular and Molecular Biology, 59(1):67-83.
5. Bochereau L., Bourgine P., Palagos B. 1992. Method for prediction by combining data analysis and neural networks: application to prediction of apple quality using near infrared spectra. Journal of Agricultural Engineering Research, 51:207-216.
6. Bohmanova J., Misztal I., Cole J. 2007. Temperature-humidity indices as indicators of milk production losses due to heat stress. Journal of Dairy Science, 90:1947-1956.
7. Bouraoui R., Lahmar M., Majdoub A., Djemali M., Belyea R. 2002. THE relationship of temperature humidity index with milk production of dairy cows in a Mediterranean climate. Animal Research, 51:479-491.
8. Dash S., Chakravarty A.K., Singh A., Upadhyay A., Singh M., Yousuf S., 2016. Efect of heat stress on reproductive performances of dairy cattle and buffaloes: A review. Veterinary World, 9:235-244.
9. Dekkers J., Jamrozik J., Ten Hag J., Schaeffer L., Weersink A. 1996. Genetic and economic evaluation of persistency in dairy cattle. Interbull Bulletin, 12:97-102.
10. Dikmen S., Hansen J. 2009. Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? Journal of Dairy Science, 92:109-116.
11. Dunn R.J.H., Mead N.E., Willett K.M., Parker D.E. 2014. ANALYSI of heat stress in UK dairy cattle and impact on milk yields. Environmental Research Letters, 9(6):064006.
12. Fernandez C., Soria E., Martı´n J.D., Serrano A.J. 2006. Neural networks for animal science applications: Two case studies. Expert Systems with Applications, 31:444-450.
13. Finocchiaro R., van Kaam J., Portolano B., Misztal I., 2005. Effect of heat stress on production of mediterranean dairy sheep. Journal of Dairy Science, 88:1855-1864.
14. Graves A., Liwicki M., Fernandez S., Bertolami R., Bunke H., Schmidhuber J. 2009. A novel connectionist system for improved unconstrained handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5):855-868.
15. Grzesiak W., Błaszczyk P., Lacroix R. 2006. Methods of predicting milk yield in dairy cows predictive capabilities of wood's lactation curve and artificial neural networks (ANNs). Computers and Electronics in Agriculture, 54:69-83.
16. Hahn G., Gaughan J., Mader T., Eigenberg R. 2009. Thermal indices and their applications for livestock environments. In: A. De Shazer (ed), Livestock energetics and thermal environmental management. American Society of Agricultural and Biology, Michigan, USA, P: 113-130.
17. Hammami H., Rekik H., Soyeurt C., Bastin N., 2008. Genotype × environment interaction for milk yield in Holsteins using Luxembourg and Tunisian populations. Journal of Dairy Science, 91:3661-3671.
18. Ince D., Sofu A., 2013. Estimation of lactation milk yield of Awassi sheep with Artificial Neural Network modeling. Small Ruminant Research, 113:15-19.
19. Esmailkhanian S., Kheirabadi K. 2019. Investigating the effects of heat stress on the production performance of Hastein cows of Gawdasht research station. Animal Science Journal (Pajouhesh & Sazandegi), 32(123):259-270.
20. Jakobsen J., Madsen P., Jensen J., Peersen J., Cristiensen L.G., Sorensen D.A., 2002. Genetic parameters for milk production and persistency for Danish Holsteins estimated in random regression models using REML. Journal of Dairy Science, 85:1607-1616.
21. Johnson H.D. 1987. Part 2, chapter3: bioclaimate effects on growth,reproduction and milk production. In bioclimatology and the adaptation of livestock. Elsivier, Amsterdam.
22. Kadzerea C.T., Murphy M.R., Silanikove N., Maltz E. 2002. Heat stress in lactating dairy cows: a review. Livestock Production Science, 77:59-91.
23. Koc A. 2008. A study of somatic cell counts in the milk of Holstein-Friesian. Turkish Journal of Veterinary and Animal Sciences, 32(1):13-18.
24. Koonawootrittrion S., Elzo S., Sintala W. 2001. Lactation curves and prediction of daily and accumulated milk yield in a multibreed dairly herd in thailand using all daily records. animal.ifas.ufl.edu/elzo/publications/refereed/docs/2001_2_koonawootrittriron.pdf
25. Kume S., Takahashi S., Kurihara M., Aii T. 1990. The effects of a hot environment on the major mineral content in milk. Japanese Journal of Zootechnical Science, 1990:199-207
26. Mahadevan P. 1951. The effect of environment and heredity on lactation. Persistency of lactation. The Journal of Agricultural Science, 41(1-2):80-88.
27. Nardon A., lacetera N., Bernabucci U., Ronchi B. 1997. Composition of colostrum from dairy heifers exposed to high air temperatures during late pregnancy and the early postpartum period. Journal of Dairy Science, 80:838-844.
28. Nobari K., Baneh H., Esmaeilkhanian S., Yussefi K., Samiei R. 2019. Comparison of linear model and artificial neural network to prediction of milk yield using first recorded parity. Journal of Ruminant Research, 6(4):89-100.
29. Pollott G. 2000. A biological approach to lactation curve analysis for milk tiled. Journal of Dairy Science, 83:2448-2458.
30. Ravagnolo O., Misztal I., Hoogenboom G., 2000. Genetic component of heat stress in dairy cattle, development of heat index function. Journal of Dairy Science, 83:2120-2125.
31. Savegnago R.P., Nunes B.N., Caetano S.L., Ferraudo A.S., Schmidt G.S., Ledur M.C., Munari D.P. 2011. Comparison of logistic and neural network models to fit to the egg production curve of white leghorn hens. Poultry Science, 90(3):705-711.
32. Sharma A., Sharma R.K., Kasana H.S. 2006. Empirical comparisons of feed-forward connectionist and conventional regression models for prediction of first lactation 305-day milk yield in Karan Fries dairy cows. Neural Computing and Applications, 15:359-365.
33. Swalve H. 2000. Theoretical basis and computational methods for different test day genetics evaluation methods. Journal of Dairy Science, 83:1115-1124.
34. West J.W. 2003. Effects of heat-stress on production in dairy cattle. Journal of Dairy Science, 86(6):2131-44.