پروبیوتیک ها: کیفیت آب، عملکرد رشد و ایمنی در آبزیپروری میگو
محورهای موضوعی :
فصلنامه زیست شناسی جانوری
محمد حسین خانجانی
1
,
ُسعید حاجی رضایی
2
1 - گروه علوم و مهندسی شیلات، دانشکده منابع طبیعی، دانشگاه جیرفت، جیرفت، کرمان، ایران
2 - گروه علوم و مهندسی شیلات، دانشکده منابع طبیعی، دانشگاه جیرفت، جیرفت، کرمان، ایران
تاریخ دریافت : 1402/01/27
تاریخ پذیرش : 1402/03/12
تاریخ انتشار : 1402/09/01
کلید واژه:
ایمنی,
پروبیوتیک,
آبزیپروری,
کیفیت آب,
عملکرد رشد,
میگو,
چکیده مقاله :
با توجه به افزایش جمعیت جهان، صنعت آبزیپروری به عنوان یکی از صنایع تولید غذا در سالهای اخیر رشد و توسعه یافته است. یکی از راهکارهای افزایش تولیدات آبزیپروری، افزایش تراکم ذخیرهسازی و سطح زیر کشت میباشد. افزایش تراکم ذخیرهسازی منجر به کاهش کیفیت آب، شیوع و گسترش عوامل بیماریزا میشود. استفاده از آنتیبیوتیکها به عنوان ماده شیمیایی جهت کاهش اثر عامل بیماریزا در آبزیپروری، از طرف مصرف کنندگان چندان پذیرفته شده نیست. امروزه استفاده از پروبیوتیکها جهت حفظ سلامت محیط زیست برای آبزی پرورش یافته و افزایش عملکرد تولید بدون تاثیر منفی بر مصرف کنندگان حائز اهمیت است. مطالعات بر استفاده از پروبیوتیکها برای دستیابی به اهداف آبزیپروری پایدار سازگار با محیط زیست افزایش یافته است. از مزایای استفاده از پروبیوتیکها در آبزیپروری میگو، بهبود کیفیت آب، کارایی بهتر خوراک، بهبود عملکرد رشد، فعالیت آنزیمهای گوارشی، ایمنی و مقاومت در برابر عوامل بیماریزا گزارش شده است. پروبیوتیکها در شرایط استرس از جمله دستکاری، رقم بندی، حمل و نقل، واکسیناسیون و درمان بیماریها به میگو کمک میکنند. پروبیوتیکهای که در صنعت آبزیپروری استفاده شده اند بیشتر شامل گونههای باسیلوس، لاکتوباسیلوس، میکروکوکوس، اینتروکوکوس، لاکتوکوکوس، استرپتوکوکوس و کارنوباکتریوم هستند. در مطالعه مروری حاضر، کاربرد و اهمیت پروبیوتیکها در آبزیپروری میگو و تاثیر آن بر کیفیت آب، عملکرد رشد و ایمنی مورد بررسی قرار میگیرد.
چکیده انگلیسی:
Over the last few decades, the aquaculture industry has grown and developed as one of the major food production industries. Increased stocking density and cultivated area are two ways to increase aquaculture production. Stocking density increases result in a decrease in water quality and the spread of pathogens. As a chemical substance, antibiotics are not widely accepted by consumers as a means of reducing pathogenic agents in aquaculture. Nowadays, probiotics are crucial to maintaining the health of farmed aquatic animals and increasing production performance without negatively affecting consumers. Probiotics are being used in more studies to achieve environmentally friendly sustainable aquaculture goals. Probiotics have been shown to improve water quality, feed efficiency, growth performance, digestive enzyme activity, immunity, and resistance to pathogens in shrimp aquaculture. The presence of probiotics helps shrimp under stressful conditions, such as handling, grading, transportation, vaccination, and disease treatment. In the aquaculture industry, probiotics are mostly Bacillus, Lactobacillus, Micrococcus, Enterococcus, Lactococcus, Streptococcus, and Carnobacterium species. This study examines the use and importance of probiotics in shrimp aquaculture, as well as their effects on water quality, growth performance, and immunity.
منابع و مأخذ:
Adel M., Yeganeh S., Dawood M.A.O., Safari R., Radhakrishnan S. 2017. Effects of Pediococcus pentosaceus supplementation on growth performance, intestinal microflora and disease resistance of white shrimp, Litopenaeus vannamei. Aquaculture Nutrition, 23: 1401–1409.
Aftabuddin S., Kashem M.A., Kader M.A., Sikder, M.N.A., Hakim, M.A. 2013. Use of Streptomyces fradiae and Bacillus megaterium as probiotics in the experimental culture of tiger shrimp Penaeus monodon (Crustacea, Penaeidae). Aquaculture, Aquarium, Conservation and Legislation, 6(3): 253-267.
Ajitha S., Sridhar M., Sridhar N., Singh I.S.B., Varghese V. 2004. Probiotic effects of lactic acid bacteria against Vibrio alginolyticus in Penaeus (Fenneropenaeus) indicus (H. Milne Edwards). Asian. Fisheries Science, 17(1): 71-80.
Akhter N., Wu B., Memon A.M., Mohsin, M. 2015. Probiotics and prebiotics associated with aquaculture: a review. Fish and Shellfish Immunology, 45(2): 733-741.
Alavandi S.V., Vijayan K.K., Santiago T.C., Poornima M., Jithendran K.P., Ali S.A., Rajan J.J.S. 2004. Evaluation of Pseudomonas sp. PM 11 and Vibrio fluvialis PM 17 on immune indices of tiger shrimp, Penaeus monodon. Fish and Shellfish Immunology, 17(2): 115-120.
Amenyogbe E., Chen G., Wang Z., HuangS., Huang B., Li H. 2020. The exploitation of probiotics, prebiotics and synbiotics in aquaculture: present study, limitations and future directions.: a review. Aquaculture International, 28: 1017-1041.
Amoah K., Huang Q.C., Tan B.P., Zhang S., Chi S.Y., Yang Q.H., Liu H.Y., Dong, X.H. 2019. Dietary supplementation of probiotic Bacillus coagulans ATCC 7050, improves the growth performance, intestinal morphology, microflora, immune response, and disease confrontation of Pacific white shrimp, Litopenaeus vannamei. Fish and Shellfish Immunology, 87: 796-808.
Amparyup P., Charoensapsri W., Tassanakajon A. 2013. Prophenoloxidase system and its role in shrimp immune responses against major pathogens. Fish and Shellfish Immunology, 34(4): 990-1001.
Aragona M., Lauriano E.R., Pergolizzi S., Faggio C. 2017. Opuntia ficus-indica (L.) Miller as a source of bioactivity compounds for health and nutrition. Natural Product Research, 14: 1–13.
Asaikkutti A., Bhavan P.S., Vimala K., Karthik M., Cheruparambath P. 2016. Effect of different levels dietary vitamin C on growth performance, muscle composition, antioxidant and enzyme activity of freshwater prawn, Macrobrachium malcolmsonii. Aquaculture Reports, 3: 229-236.
Bachruddin M., Sholichah M., Istiqomah S., Supriyanto A. 2018. Effect of probiotic culture water on growth, mortality, and feed conversion ratio of shrimp (Litopenaeus vannamei Boone). in IOP Conference Series: Earth and Environmental Science,137, 012036.
Bernal M.G., Campa-Córdova Á.I., Saucedo P.E., Casanova González M., Marrero R.M., Mazón-Suástegui J.M. 2015. Isolation and in vitro selection of actinomycetes strains as potential probiotics for aquaculture. Veterinary World, 8(2): 170-176.
Blacher E., Levy M., Tatirovsky E., Elinav E. 2017. Microbiome-modulated metabolites at the interface of host immunity. The Journal of Immunology, 198(2): 572-580.
Cabello F.C. 2006. Heavy use of prophylactic antibiotics in aquaculture a growing problem for human and animal health and for the environment. Environmental Microbiology, 8: 1137- 1144. 7.
Chen C.Y., Chen P.C., Weng F.C.H., Shaw G.T., Wang D. 2017. Habitat and indigenous gut microbes contribute to the plasticity of gut microbiome in oriental river prawn during rapid environmental change. PLoS One, 12(7): e0181427.
Chen M., Chen X.Q., Tian L.X., Liu Y., Niu J. 2020. Improvement of growth, intestinal short-chain fatty acids, non-specific immunity and ammonia resistance in Pacific white shrimp (Litopenaeus vannamei) fed dietary water-soluble chitosan and mixed probiotics. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 236: 108791.
Chiu C.H., Guu Y.K., Liu C.H., Pan T. Cheng W. 2007. Immune responses and gene expression in white shrimp, Litopenaeus vannamei, induced by Lactobacillus plantarum. Fish and Shellfish Immunology, 23(2): 364-377.
Chong H.Y., Tan L.T.H., Law J.W.F., Hong K.W. Ratnasingam V., Mutalib N.S., Lee L.H., Letchumanan V. 2022. Exploring the Potential of Human Milk and Formula Milk on Infants’ Gut and Health. Nutrients, 14(17): 3554.
Chumpol S., Kantachote D., Nitoda T., Kanzaki H. 2017. The roles of probiotic purple nonsulfur bacteria to control water quality and prevent acute hepatopancreatic necrosis disease (AHPND) for enhancement growth with higher survival in white shrimp (Litopenaeus vannamei) during cultivation. Aquaculture, 473: 327-336.
Cornejo-Granados F., Gallardo-Becerra L., Leonardo-Reza M., Ochoa-Romo J.P., Ochoa-Leyva A. 2018. A meta-analysis reveals the environmental and host factors shaping the structure and function of the shrimp microbiota. PeerJ, 6: e5382.
Corrêa‐Oliveira R., Fachi J.L., Vieira A., SatoT., Vinolo M.A.R. 2016. Regulation of immune cell function by short‐chain fatty acids. Clinical and Translational Immunology, 5(4): e73.
da Silva B.C.E., Vieira F.D.N., Mouriño J.L.P., Bolivar, N., SeiffertQ. 2016. Butyrate and propionate improve the growth performance of Litopenaeus vannamei. Aquaculture Research, 47(2): 612-623.
da Silva Sabo S., Mendes M.A., da Silva Araújo, E., de Almeida Muradian L.B., Makiyama E.N., LeBlanc J.G., Borelli P., Fock R.A., Knöbl T., de Souza Oliveira R.P. 2020. Bioprospecting of probiotics with antimicrobial activities against Salmonella Heidelberg and that produce B-complex vitamins as potential supplements in poultry nutrition. Science Reports, 10(1): 1-14.
Dalmin G., Kathiresan K., Purushothaman A. 2001. Effect of probiotics on bacterial population and health status of shrimp in culture pond ecosystem. Indian Journal of Experimental Biology, 39(9): 939-942.
Dalto D.B., Matte J.J. 2017. Pyridoxine (vitamin B6) and the glutathione peroxidase system; a link between onecarbon metabolism and antioxidation. Nutrients, 9(3): 189.
Das S., Ward L.R., Burke C. 2008. Prospects of using marine actinobacteria as probiotics in aquaculture. Applied Microbiology and Biotechnology, 81(3): 419-429.
Dawood M.A.O., Koshio S., Ishikawa M., El-Sabagh M., Esteban M.A., Zaineldin A.I. 2016. Probiotics as an environment friendly approach to enhance red sea bream, Pagrus major growth, immune response and oxidative status. Fish and Shellfish Immunology, 57: 170–178.
Dawood M.A.O., Koshio S., Abdel-Daim M.M., Van Doan H. 2018. Probiotic application for sustainable aquaculture. Reviews in Aquaculture, 11(3):907-924.
De B.C., Meena D.K., Behera B.K., Das P., Mohapatra P.D., Sharma A.P. 2014. Probiotics in fish and shellfish culture: immunomodulatory and Eco physiological responses. Fish Physiology and Biochemistry, 40(3): 921–971.
Duan Y., Zhang Y., Dong H., Wang Y., Zheng X., Zhang J. 2017. Effect of dietary Clostridium butyricum on growth, intestine health status and resistance to ammonia stress in Pacific white shrimp Litopenaeus vannamei. Fish and Shellfish Immunology, 65: 25- 33.
Duan Y., Zhang Y., Dong H., Zheng X., Wang Y., Li H., Liu Q., Zhang J. 2017. Effect of dietary poly-β-hydroxybutyrate (PHB) on growth performance, intestinal health status and body composition of Pacific white shrimp Litopenaeus vannamei (Boone, 1931). Fish and Shellfish Immunology, 60: 520-528.
Duan Y., Dong H., Wang Y., Zhang Y., Zhang J. 2018. Effects of the dietary probiotic Clostridium butyricum on intestine digestive and metabolic capacities, SCFA content and body composition in Marsupenaeus japonicus. Journal of Ocean University of China, 17(3): 690-696.
Duan Y., Wang Y., Dong H., Ding, Liu Q., Li H., Zhang J., Xiong D. 2018. Changes in the intestine microbial, digestive, and immune-related genes of Litopenaeus vannamei in response to dietary probiotic Clostridium butyricum supplementation. Frontiers in Microbiology, 9: 2191.
Ernesto Ceseña C., Vega-Villasante F., Aguirre-Guzman G., Luna-Gonzalez, A., Campa-Cordova A. 2021. Update on the use of yeast in shrimp aquaculture: a minireview. International Aquaculture Research, 13(1): 1-16.
2022. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. https://doi.org/10.4060/cc0461en
Fernandes S., Kerkar S., Leitao J., Mishra A. 2019. Probiotic role of salt pan bacteria in enhancing the growth of whiteleg shrimp, Litopenaeus vannamei. Probiotics Antimicrob Proteins, 11(4): 1309-1323.
Gamboa‐delgado J., Molina‐poveda C., Cahu C. 2003. Digestive enzyme activity and food ingesta in juvenile shrimp Litopenaeus vannamei (Boone, 1931) as a function of body weight. Aquaculture Research, 34(15): 1403-1411.
Gatesoupe F.J. 1999. The use of probiotic in aquaculture. Aquaculture,180: 147–165.
Goh J.X.H., Tan L.T.H., Law J.W.F., Ser H.L., Khaw K.Y., Letchumanan V., Lee L.H., Goh B.H. 2022. Harnessing the potentialities of probiotics, prebiotics, synbiotics, paraprobiotics, and postbiotics for shrimp farming. Reviews in Aquaculture, 14: 1478-1557.
Goh J.X.H., Tan L.T.H., Law J.W.F., Khaw K.Y., Zengin G., Chan K.G., Letchumanan V., Lee L.H., Goh B.H. 2023. Probiotics: Comprehensive Exploration of the Growth Promotion Mechanisms in Shrimps. Progress in Microbs and Molecular Biology, 6, 1; a0000324.
Gullian M., Thompson F., Rodriguez J. 2004. Selection of probiotic bacteria and study of their immunostimulatory effect in Penaeus vannamei. Aquaculture, 233(1-4): 1-14.
Hao K., Liu J.Y., Ling F., Liu X.L., Lu L., Xia L., Wang G.X. 2014. Effects of dietary administration of Shewanella haliotis D4, Bacillus cereus D7 and Aeromonas bivalvium D15, single or combined, on the growth, innate immunity and disease resistance of shrimp, Litopenaeus vannamei. Aquaculture, 428: 141-149.
Hargreaves J.A., 1998. Nitrogen biogeochemistry of aquaculture ponds. Aquaculture, 1998; 166(3-4): 181-212.
Hashemi Panah A., Rafiee G., Rezaei Tavabe K., Bozorgi S., Mirvaghefi A. 2021. Effects of utilization of Lactococcus lactis and Pediococcus pentosaseus as probiotic to improve quality of west white leg shrimp (Litopenaeus vannamei) postlarvae. Aquaculture Research, 52(4): 1724-1732.
Hastuti Y.P., Syarifuddin N.I., Tridesianti S. 2020. Application of Halomonas sp. HIB-F to Litopenaeus vannamei aquaculture system. Aquaculture, Aquarium, Conservation and Legislation, 13(4): 2116-2126.
He H., Lawrence A.L., 1993. Vitamin E requirement of Penaeus vannamei. Aquaculture, 118(3-4): 245-255.
Hindu S.V., Chandrasekaran N., Mukherjee A., Thomas J. 2018. Effect of dietary supplementation of novel probiotic bacteria Bacillus vireti 01 on antioxidant defence system of freshwater prawn challenged with Pseudomonas aeruginosa. Probiotics Antimicrob Proteins, 10(2): 356-366.
Holt C.C., Bass D., Stentiford G.D., Giezen 2020. Understanding the role of the shrimp gut microbiome in health and disease. Journal of Invertebrate Pathology, 107387.
Hoseinifar S.H., Ringø E., Shenavar Masouleh A., Esteban M.A. 2016. Probiotic, prebiotic and synbiotic supplements in sturgeon aquaculture: a review. Reviews in Aquaculture, 8(1): 89-102.
Hoseinifar S.H., Sun Y.Z., Caipang C.M. 2017. Short‐chain fatty acids as feed supplements for sustainable aquaculture: An updated view. Aquaculture Research, 48(4): 1380-1391.
Hui M.L.Y., Tan L.T.H., Letchumanan V., He Y.W., Fang C.M., Chan K.G., Law J.W., Lee L.H. 2021. The extremophilic Actinobacteria: from microbes to medicine. Antibiotics, 10(6): 682.
Huynh T.G., Shiu Y.L., Nguyen T.P., Truong Q.P., Chen J.C., Liu C.H. 2017. Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: a review. Fish and Shellfish Immunology, 64: 367-382.
Ibrahem M.D. 2015. Evolution of probiotics in aquatic world: Potential effects, the current status in Egypt and recent prospectives. Journal of Advanced Research, 6(6): 765-791.
Indira M., Venkateswarulu T., Peele K.A., Bobby M.N., Krupanidhi S. 2019. Bioactive molecules of probiotic bacteria and their mechanism of action: a review. 3 Biotech, 9(8): 1-11.
Kewcharoen W., Srisapoome P. 2019. Probiotic effects of Bacillus spp. from Pacific white shrimp (Litopenaeus vannamei) on water quality and shrimp growth, immune responses, and resistance to Vibrio parahaemolyticus (AHPND strains). Fish and Shellfish Immunology, 94: 175-189.
Keysami M.A., Mohammadpour M. 2013. Effect of Bacillus subtilis on Aeromonas hydrophila infection resistance in juvenile freshwater prawn, Macrobrachium rosenbergii (de Man). Aquaculture International, 21(3): 553-562.
Khademzade O., Zakeri M., Haghi M., Mousavi S.M. 2020. The effects of water additive Bacillus cereus and Pediococcus acidilactici on water quality, growth performances, economic benefits, immunohematology and bacterial flora of whiteleg shrimp (Penaeus vannamei Boone, 1931) reared in earthen ponds. Aquaculture Research, 51(5): 1759-1770.
Khanjani M.H., Sharifinia M. 2022. Biofloc as a food source for Banana shrimp (Fenneropenaeus merguiensis) postlarvae. N. Am. J. Aquac. 45(4): 469-479.
Khanjani M.H., Eslami J., Ghaedi G., Sourinejad I. 2022a. The effects of different stocking densities on nursery performance of banana shrimp (Fenneropenaeus merguiensis) reared under biofloc condition. Annals of Animal Scienses, 22(4): 1291–1299.
Khanjani M.H., Zahedi S., Mohammadi A. 2022b. Integrated multitrophic aquaculture (IMTA) as an environmentally friendly system for sustainable aquaculture: functionality, species, and application of biofloc technology (BFT). Environmental Science and Pollution Research, 29(45): 67513-67531.
Khanjani M.H., Torfi Mozanzade M., Fóes G.K. Aquamimicry system: a sutiable strategy for shrimp aquaculture. Annals of Animal Scienses, 22(4): 1201-1210.
Khanjani M.H., Ghaedi G., Sharifinia M. 2022d. Effects of diets containing β-glucan on survival, growth performance, hematological, immunity and biochemical parameters of rainbow trout (Oncorhynchus mykiss) fingerlings. Aquaculture Research, 53(5): 1842-1850.
Khanjani M.H., Sharifinia M., Ghaedi G. 2022f. β-glucan as a promising food additive and immunostimulant in aquaculture industry. Annals of Animal Science, 22(3): 817-827.
Khanjani M.H., Torfi Mozanzade M., Sharifinia M., EmerencianoG.C., 2023a. Biofloc: A sustainable dietary supplement, nutritional value and functional properties. Aquaculture, 562, 738757.
Khanjani M.H., da Silva L.O.B., Foes G.K., Vieira F.D., Poli M., Santos M., EmerencianoM.G.C. 2023b. Synbiotics and aquamimicry as alternative microbial-based approaches in intensive shrimp farming and biofloc: Novel disruptive techniques or complementary management tools? A scientific-based overview. Aquaculture, 567, 739273.
Khanjani M.H., Sharifinia M., Emerenciano M.G.C. 2023c. A detailed look at the impacts of biofloc on immunological and hematological parameters and improving resistance to diseases. Fish and Shellfish Immunology, 137:108796.
Kiesewalter H.T., Lozano-Andrade C.N., Maróti G., Snyder D., Cooper V.S., Jørgensen T.S., Weber T., Kovács A.T. 2020. Complete genome sequences of 13 Bacillus subtilis soil isolates for studying secondary metabolite diversity. Microbiology Resource Announcements, 9(2): e01406-19.
Knipe H., Temperton B., Lange A., Bass D., Tyler C.R. 2021. Probiotics and competitive exclusion of pathogens in shrimp aquaculture. Reviews in Aquaculture, 13(1): 324-352.
Koh A., De Vadder F., Kovatcheva Datchary P., Backhed F. 2016. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 165(6): 1332-1345.
Kong G.Y.E., Letchumanan V., Tan L.T.H., Law J.W. 2022. Gut Microbiome in Obsessive Compulsive Disorder: Potential of Probiotics as an Adjuvant Therapy. Progress In Microbes and Molecular Biology, 5(1).
Kulkarni A., Krishnan S., Anand D., Uthaman S.K., Otta S.K., Karunasagar I., Valappil R.K. 2021. Immune responses and immunoprotection in crustaceans with special reference to shrimp. Reviews in Aquaculture, 13(1): 431-459.
Kumar V., Roy S., Meena D.K., SarkarK. 2016. Application of probiotics in shrimp aquaculture: importance, mechanisms of action, and methods of administration. Reviews in Fisheries Science ana Aquaculrure, 24(4): 342-368.
Kusmiyati N., Sunarti S., Wahyuningsih T.D. 2020. Inulinase activity of extracellular protein of Lactobacillus casei ap in different growth conditions. Key Engineering Materials. 840: 101-106.
Levy M., Blacher E., Elinav E. 2017. Microbiome, metabolites and host immunity. Current Opinion in Microbiology, 35: 8- 15.
Li J., Tan B., Mai K., Ai Q., Zhang W., Liufu Z., Xu W. 2008. Immune responses and resistance against Vibrio parahaemolyticus induced by probiotic bacterium Arthrobacter XE-7 in Pacific White Shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society 39(4): 477–489.
Li W., Luan S., Luo K., Sui J., Xu X., Tan J., Kong J. 2015. Genetic parameters and genotype by environment interaction for cold tolerance, body weight and survival of the Pacific white shrimp Penaeus vannamei at different temperatures. Aquaculture, 441: 8-15.
Li E., Xu C., Wang X., Wang S., Zhao Q., Zhang M., Qin J.G., Chen L. 2018. Gut microbiota and its modulation for healthy farming of Pacific white shrimp Litopenaeus vannamei. Reviews in Fisheries Science ana Aquaculrure, 26(3): 381-399.
Li H., Tian X., Zhao K., Jiang W., Dong S. 2019. Effect of Clostridium butyricum in different forms on growth performance, disease resistance, expression of genes involved in immune responses and mTOR signaling pathway of Litopenaeus vannamai. Fish and Shellfish Immunology, 87: 13-21.
Liu H., Liu M., Wang B., Jiang K., Jiang S., Sun S., Wang L. 2010. PCR-DGGE analysis of intestinal bacteria and effect of Bacillus spp. on intestinal microbial diversity in kuruma shrimp (Marsupenaeus japonicus). Journalof Oceanology and Limnology, 28(4): 808-814.
Liu W., Ren P., He S., Xu L., Yang Y., Gu Z., Zhou Z. 2013. Comparison of adhesive gut bacteria composition, immunity, and disease resistance in juvenile hybrid tilapia fed two different Lactobacillus strains. Fish and Shellfish Immunology, 35: 54–62.
Luis-Villasenor I.E., Castellanos-Cervantes T., Gomez-Gil B., Carrillo-García A.E., Campa-Córdova A.I., Ascencio F. 2013. Probiotics in the intestinal tract of juvenile whiteleg shrimp Litopenaeus vannamei: modulation of the bacterial community. World Journal of Microbiology and Biotechnology, 29(2): 257-265.
Ma R., Yang H., Sun Y., Ji-dan Y., Chunxiao Z., Wenyan L. 2010. Biological characteristics of two Bacillus strains isolated from gut of grouper, Epinephlus coioides. Fisheries Science, 29(9): 505-509.
Matias H.B., Yusoff F.M., Shariff M., Azhari O. 2002. Effects of commercial microbial products on water quality in tropical shrimp culture ponds. Asian Fisheries Science, 15(5): 239-248.
Meunpol O., Lopinyosiri K., Menasveta P. 2003. The effects of ozone and probiotics on the survival of black tiger shrimp (Penaeus monodon). Aquaculture, 220(1-4): 437-448.
Miao S., Han B., Zhao C., Hu J., Zhu J., Zhang X., Sun L. 2020. Effects of dietary Pediococcus acidilactici GY2 single or combined with Saccharomyces cerevisiae or/and β-glucan on the growth, innate immunity response and disease resistance of Macrobrachium rosenbergii. Fish and Shellfish Immunology, 98: 68-76.
Mo W.Y., Chen Z., Leung H.M., Leung A.O.W. 2017. Application of veterinary antibiotics in China’s aquaculture industry and their potential human health risks. Environmental Science and Pollution Research, 24(10): 8978-8989.
Mohammed Y., Lee B., Kang Z., Du G. 2014. Capability of Lactobacillus reuteri to produce an active form of vitamin B12 under optimized fermentation conditions. Journal of Academia and Industrial Research, 2: 617-21.
Mohapatra S., Chakraborty T., Prusty A., Das P., Paniprasad K., Mohanta K.N. 2012. Use of different microbial probiotics in the diet of rohu, Labeo rohita fingerlings: effects on growth, nutrient digestibility and retention, digestive enzyme activities and intestinal microflora. Aquaculture Nutrition, 18(1): 1-11.
Mohapatra S., Chakraborty T., Kumar V., DeBoeck G., Mohanta K.N., 2013. Aquaculture and stress management: a review of probiotic intervention. Journal of Animal Physiology and Animal Nutrition,97(3): 405-430.
Moriarty D. 1998. Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture, 164(1-4): 351-358.
Moss S.M., Forster I.P., Tacon A.G. 2006. Sparing effect of pond water on vitamins in shrimp diets. Aquaculture, 258(1-4): 388-395.
Moustafa E., Saad T., Khalil R. 2020. The ameliorative role of synbiotic culture techniques application in white shrimp (Litopenaeus vannamei) during nursery stage. Advances in Animal and Veterinary Sciences, 8(3): 260-277.
Nath S,. Matozzo V., Bhandari D., Faggio C. 2018. Growth and liver histology of Channa punctatus exposed to a common biofertilizer. Natural Product Research, 28: 1–8.
Ng W.K., Koh C.B., Teoh C.Y., Romano N. 2015. Farm-raised tiger shrimp, Penaeus monodon, fed commercial feeds with added organic acids showed enhanced nutrient utilization, immune response and resistance to Vibrio harveyi Aquaculture, 449: 69-77.
Nhan D.T., Wille M., De Schryver P., Defoirdt T., Bossier P., Sorgeloos P. 2010. The effect of poly β-hydroxybutyrate on larviculture of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture, 302(1-2): 76-81.
Nimrat S., Khaopong W., Sangsong J., Boonthai T., Vuthiphandchai V. 2019. Dietary administration of Bacillus and yeast probiotics improves the growth, survival, and microbial community of juvenile whiteleg shrimp, Litopenaeus vannamei. Journal of Applied Aquaculture, 1-17.
Ochoa-Solano J.L., Olmos-Soto J. 2006. The functional property of Bacillus for shrimp feeds. Food Microbiology, 23(6): 519-525.
Olmos J., Acosta M., Mendoza G., Pitones V. 2020. Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Archives of Microbiology, 202(3): 427-435.
Pourmozaffar S., Hajimoradloo A., Miandare H.K. 2017. Dietary effect of apple cider vinegar and propionic acid on immune related transcriptional responses and growth performance in white shrimp, Litopenaeus vannamei. Fish and Shellfish Immunology, 60: 65-71.
Pradeepkiran J.A. 2019. Aquaculture role in global food security with nutritional value: a review. Translational Animal Science, 3(2): 903-910.
Purivirojkul W., Maketon M., Areechon N. 2005. Probiotic properties of Bacillus pumilus, Bacillus sphaericus and Bacillus subtilis in black tiger shrimp (Penaeus monodon Fabricius) Culture. Kasetsart Journal - NaturalScience, 39: 262-273.
Qin Z., Babu V.S., Wan Q., Zhou M., Liang R., Muhammad A., Zhao L., Li J., Lan J., Lin L. 2018. Transcriptome analysis of Pacific white shrimp (Litopenaeus vannamei) challenged by Vibrio parahaemolyticus reveals unique immune-related genes. Fish and Shellfish Immunology, 77: 164-174.
Rajeev R., Adithya K., Kiran G.S., Selvin 2021. Healthy microbiome: a key to successful and sustainable shrimp aquaculture. Reviews in Aquaculture, 13(1): 238-258
Ramadhani D.E., Widanarni W., Sukenda S. 2019. Microencapsulation of probiotics and its applications with prebiotic in Pacific white shrimp larvae through Artemia Jurnal Akuakultur Indonesia, 18(2): 130-140.
Rengpipat S., Rukpratanporn S., Piyatiratitivorakul S., Menasaveta P. 2000. Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture, 191(4): 271-288.
Rengpipat S., Tunyanun A., Fast A.W., Piyatiratitivorakul S., Menasveta P. 2003. Enhanced growth and resistance to Vibrio challenge in pond-reared black tiger shrimp Penaeus monodon fed a Bacillus Diseases of Aquatic Organisms, 55: 169–173.
Romano N., Koh C.B., Ng W.K. 2015. Dietary microencapsulated organic acids blend enhances growth, phosphorus utilization, immune response, hepatopancreatic integrity and resistance against Vibrio harveyi in white shrimp, Litopenaeus vannamei. Aquaculture, 435: 228-236.
Romero J., Feijoó C.G., Navarrete P., 2012. Antibiotics in aquaculture–use, abuse and alternatives. Health and environment in aquaculture. 159, Books on Demand.
Rossi M., Amaretti A., Raimondi S. 2011. Folate production by probiotic bacteria. Nutrients, 3(1): 118-134.
Rowley A., Powell A., Invertebrate immune systems–specific, quasi-specific, or nonspecific? The Journal of Immunology, 179(11): 7209-7214
Sadat Hoseini Madani N., Adorian T.J., Ghafari Farsani H., Hoseinifar S.H. 2018. The effects of dietary probiotic Bacilli (Bacillus subtilis and Bacillus licheniformis) on growth performance, feed efficiency, body composition and immune parameters of whiteleg shrimp (Litopenaeus vannamei) postlarvae. Aquaculture Research, 49(5): 1926-1933.
Seenivasan C., Bhavan P.S., Radhakrishnan S. 2011. Effect of probiotics (BinifitTM) on survival, growth, biochemical constituents and energy budget of the freshwater prawn Macrobrachium rosenbergii post larvae. Aquaculture, 41: 5919-5927.
Seenivasan C., Radhakrishan S., Muralisankar T. 2012. Efficacy of probiotics on survival, growth, biochemical changes and energy utilization performance of Macrobrachium rosenbergii (De Man 1879) post-larvae. Journalof Scientific Research, 4(3): 729-740.
Seenivasan C., Radhakrishnan S., Muralisankar T., BhavanS. 2016. Effects of probiotics on survival, growth and digestive enzymes activities in freshwater prawn Macrobrachium rosenbergii (De Man 1879). Proceedings of the Zoological Society, 69: 52-60.
Ser H.L., Tan W.S., Yin W.F., Chan K.G. Letchumanan V. 2020. Whole genome sequence of MUM116, a Bacillus species isolated from intertidal soil. Progress In Microbes and Molecular Biology, 3(1).
Sharma P., Tomar S.K., Goswami P., Sangwan V., Singh, R. 2014. Antibiotic resistance among commercially available probiotics. Food Research International, 57: 176–195.
Shiau S.Y., Peng C.Y. 1992. Utilization of different carbohydrates at different dietary protein levels in grass prawn, Penaeus monodon, reared in seawater. Aquaculture, 101(3-4): 241-250.
Silva B., Nolasco‐Soria H., Magallón‐Barajas F., Civera-Cerecedo R., Casillas-Hernández R., Seiffert W. 2016. Improved digestion and initial performance of whiteleg shrimp using organic salt supplements. Aquaculture Nutrition, 22(5): 997-1005.
Sorum H. 2006. Antimicrobial drug resistance in fish pathogens. In: Aarestrup FM, ed. Antimicrobial Resistance in Bacteria of Animal Origin. Washington DC; ASM Press: 2006; 213-238.
Soto J.O. 2021. Feed intake improvement, gut microbiota modulation and pathogens control by using Bacillus species in shrimp aquaculture. World Journal of Microbiology and Biotechnology, 37(2): 1-7.
Tacon A.G., Lemos D., Metian M. 2020. Fish for health: improved nutritional quality of cultured fish for human consumption. Reviews in Fisheries Science and Aquaculture, 28(4): 449-458.
Tacon A.G. 2021. The nutrition and feeding of farmed fish and shrimp a training manual: the essential nutrients. Available at: https://www.fao.org/3/AB470E/AB470E 08.htm [Accessed on 22 August 2021].
Tadese D.A., Sun C., Liu B., Muritu R.W., Kevin N.T., Zhou Q., Zhu L., Zhang H., Bo L., Liu M., Xu H. 2020. Combined effects of emodin and Clostridium butyricum on growth and nonspecific immunity of giant freshwater prawns, Macrobrachium rosenbergii. Aquaculture, 525: 735281.
Tamilarasu A., Ahilan B., Gopalakannan A., Lingam R.S.S. 2021. Evaluation of probiotic potential of Bacillus strains on growth performance and physiological responses in Penaeus vannamei. Aquaculture Research, 52(7): 3124-3136.
Tan L.T.H., Lee L.H., Goh B.H. 2020. Critical review of fermentation and extraction of anti-Vibrio compounds from Streptomyces. Progress In Microbes and Molecular Biology, 3(1)
Tsai C.Y., Chi C.C., Liu C.H. 2019. The growth and apparent digestibility of white shrimp, Litopenaeus vannamei, are increased with the probiotic, Bacillus subtilis. Aquaculture Research, 50(5): 1475-1481.
Verma G., Gupta A. 2015. Probiotics application in aquaculture: improving nutrition and health. Animal Feed Science and Technology, 3: 53-64.
Verschuere L., Rombaut G., Sorgeloos P., Verstraete W. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiology and molecular biology reviews, 64(4): 655-671.
Vieco-Saiz N., Belguesmia Y., Raspoet R., Auclair E., Gancel F., Kempf I., Drider D. 2019. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Frontiers in Microbiology, 10: 57.
Vijayan K.K., Singh I.S.B., Jayaprakash N.S., Alavandi S.V., Pai S.S., Preetha R., Rajan J.J.S., Santiago T.C. 2006. A brackishwater isolate of Pseudomonas PS-102, a potential antagonistic bacterium against pathogenic vibrios in penaeid and non-penaeid rearing systems. Aquaculture, 251(2-4): 192-200.
Vuong C.N., Chou W.K., Hargis B.M., Berghman L.R., Bielke L.R. 2016. Role of probiotics on immune function and their relationship to antibiotic growth promoters in poultry, a brief review. International Journal of Probiotics and Prebiotics, 11(1): 1-7.
Wang Y.B., Xu Z.R., Xia M.S. 2005. The effectiveness of commercial probiotics in northern white shrimp Penaeus vannamei Fisheries Science, 71(5): 1036 – 1041.
Wang Y.B., Tian Z.Q., Yao J.T., Li W.F. 2008. Effect of probiotics, Enteroccus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response. Aquaculture, 277(3): 203-207.
Wang X.W., Wang J.X. 2013. Pattern recognition receptors acting in innate immune system of shrimp against pathogen infections. Fish and Shellfish Immunology, 34(4): 981-989.
Wang H., Wang C., Tang Y., Sun B., Huang J., Song X. 2018. Pseudoalteromonas probiotics as potential biocontrol agents improve the survival of Penaeus vannamei challenged with acute hepatopancreatic necrosis disease (AHPND)-causing Vibrio parahaemolyticus. Aquaculture, 494: 30-36.
Wei C., Wang X., Li C., Zhou H., Liu C., Mai K., He G. 2021. Effects of dietary Shewanella sp. MR-7 on the growth performance, immunity, and intestinal microbiota of Pacific white shrimp. Aquaculture Reports, 19: 100595.
Won S., Hamidoghli A., Choi W., Bae J., Jang W., Lee S., Bai S.C. 2020. Evaluation of Potential Probiotics Bacillus subtilis WB60, Pediococcus pentosaceus, and Lactococcus lactis on Growth Performance, Immune Response, Gut Histology and Immune Related Genes in Whiteleg Shrimp, Litopenaeus vannamei. Microorganisms,19: 8(2): 281.
Xie J.J., Liu Q.Q., Liao S., Fang H.H., Yin P., Xie S.W., Tian L.X., Liu Y.J., Niu J. 2019. Effects of dietary mixed probiotics on growth, non-specific immunity, intestinal morphology and microbiota of juvenile pacific white shrimp, Litopenaeus vannamei. Fish and Shellfish Immunology, 90: 456-465.
Zhang Q., Tan B., Mai K., Zhang W., Ma H., Ai Q., Wang X., 2011. Dietary administration of Bacillus (B. licheniformis and subtilis) and isomaltooligosaccharide influences the intestinal microflora, immunological parameters and resistance against Vibrio alginolyticus in shrimp, Penaeus japonicus (Decapoda: Penaeidae). Aquaculture Research, 42(7): 943-952.
Zhang H., Sun Z., Liu B., Xuan Y., Jiang M., Pan Y., Zhang Y., Gong Y., Lu X., Yu D., Kumar D., Hu X., Cao G., Xue R., Gong C., 2016. Dynamic changes of microbial communities in Litopenaeus vannamei cultures and the effects of environmental factors. Aquaculture, 455: 97-108.
Zhao L., Wang W., Huang X., Guo T., Wen W., Feng L., Wei L., 2017. The effect of replacement of fish meal by yeast extract on the digestibility, growth and muscle composition of the shrimp Litopenaeus vannamei. Aquaculture Research, 48(1): 311-320.
Zhao Y., Duan C., Zhang X., Chen H., Ren H., Yin Y., Ye L., 2018. Insights into the gut microbiota of freshwater shrimp and its associations with the surrounding microbiota and environmental factors. Journal of Microbiology and Biotechnology, 28(6): 946-956.
Ziaei-Nejad S., Rezaei M.H., Takami G.A., Lovett D.L., Mirvaghefi A.R., Shakouri M. 2006. The effect of Bacillus bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture, 252: 516–524.
Zokaeifar H., Balcázar J.L., Saad C.R., Kamarudin M.S., Sijam K., Arshad A., Nejat N. 2012. Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish and Shellfish Immunology, 33: 683–689.
Zuo Z.H., Shang B.J., Shao Y.C., Li W.Y., Sun J.S., 2019. Screening of intestinal probiotics and the effects of feeding probiotics on the growth, immune, digestive enzyme activity and intestinal flora of Litopenaeus vannamei. Fish and Shellfish Immunology, 86: 160-168.
_||_