اثرات ضد توموری ترکیبی از اسانس سیلیبیوم مارانوم و 5-فلورویوراسیل بر سلولهای کبدی (HepG2)
محورهای موضوعی :
فصلنامه زیست شناسی جانوری
محمد جابر مسعود خوی
1
,
محمدرضا صالحی سلمی
2
,
معصومه فراست
3
,
حامد میرزایی
4
*
1 - گروه باغبانی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
2 - استاد مدعو گروه باغبانی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران و عضو هیئت علمی گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، اهواز، ایران
3 - گروه باغبانی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
4 - استاد مدعو گروه باغبانی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران و عضو هیئت علمی مرکز تحقیقات بیوشیمی و تغذیه در بیماریهای متابولیک، دانشگاه علوم پزشکی کاشان، کاشان، ایران
تاریخ دریافت : 1400/05/26
تاریخ پذیرش : 1400/06/20
تاریخ انتشار : 1401/03/01
کلید واژه:
درمان ترکیبی,
رگزایی,
سرطان سلولهای کبدی,
اسانس سلیبیوم ماریانوم,
5-فلورو اوراسیل,
چکیده مقاله :
دسرطان سلولهای کبدی (HCC) یکی از شایعترین بدخیمیها در سرتاسر جهان میباشد و نسبت به داروهای شیمیدرمانی مانند دوکسوروبیسین و 5-فلورویوراسیل (5-FU) مقاوم میباشد. عصاره سیلیبیوم ماریانوم یا ترکیب فعال سیلی مارین آن خاصیت ضدسرطانی دارد و بپیشنهاد شده است که به عنوان یک عامل جایگزین و مکمل در درمان میتواند استفاده می شود. در این مطالعه تأثیرات ترکیبی اسانس سلیبیوم ماریانوم و5-FU برای سرکوب رشد HCC در شرایط آزمایشگاهی با تأثیر بر مسیرهای Wnt، NF-κB، رگزائی، آپوپتوز و اتوفاژی بررسی شد. بیان ژنهای مسیر پیام رسانی NF-κB و Wnt و همچنین فاکتورهای مربوط به رگزائی، آپوپتوز و اتوفاژی با استفاده از تکنیکهای وسترن بلات و qRT-PCR بررسی شد. براساس نتایج بدسن آمده همه تیمارها در مقایسه با گروه کنترل، زیستاییِ سلولهای HepG2 را کاهش دادند. علاوه بر این، اسانس سلیبیوم ماریانوم خوزستان یا اصفهان (Sm-K و Sm-I) در ترکیب با 5-FU، مهاجرت و تهاجم را در سلولهای HepG2 را کاهش داد. از لحاظ آماری میانگین بیان پروتئینهای مرتبط با رگزائی (VEGF، COX-2، Bfgf و HIF-1α)، آپوپتوز (Bcl-2، Bax و کاسپاز-8)، اوتوفاژی (Beclin-1، LC3-I و LC3-II) و NF-kB (total NF-κB (p65) و phospho NF κB (p65)) به میزان قابل توجهی در سلول های تیمار شده در مقایسه با گروه کنترل تغییر یافته است. علاوه براین، سطوح بیان ژنهای مرتبط با مسیر Wnt نیز کاهش یافت. روی هم رفته، یافتهها نشان داد که سلیبیوم ماریانوم به تنهایی یا در ترکیب با 5-FU میتواند از طریق تنظیم مسیرهای پیام رسانی اتوفاژی، آپوپتوز، رگزائی، NF κB و Wnt، اثرات ضدتومور ایجاد کند.
چکیده انگلیسی:
The present study evaluated the efficacy of combining 5-fluorouracil (5-FU) and Silybum marianum essential oils to suppress in vitro Hepatocellular carcinoma (HCC) growth by influencing the Wnt, NF-κB, angiogenesis, apoptosis and autophagy pathways. Silybum marianum essential oils were studied alone and in combination with 5-FU in the HepG2 cell-line. The expression of NF-κB and Wnt signaling pathway genes as well as angiogenesis-, apoptosis- and autophagy-associated genes and proteins were evaluated using Western blot and qRT-PCR techniques. Each treatment decreased the viability of HepG2 cells compared with the control group. Moreover, S. marianum essential oils from Khozestan or Isfahan (Sm-K and Sm-I) in combination with 5-FU reduced the migration and invasion of HepG2 cells. Angiogenesis-related proteins i.e. VEGF, COX-2, Bfgf and HIF-1α were significantly reduced. Apoptosis- and autophagy-related proteins i.e. caspase-8, Bax, Bcl-2, Beclin-1, LC3-I, and LC3-II were modulated by each treatment. Each treatment decreased total NF κB (p65) and phospho NF κB (p65) at protein levels. The expression levels of Wnt pathway-related genes were also decreased. Taken together, these findings revealed that S. marianum, either alone or in combination with 5-Fu, could exert anti-tumor effects via modulating autophagy, apoptosis, angiogenesis, NF κB and Wnt signaling pathways.
منابع و مأخذ:
Abdalla A., Ali N.A., Zoheir Kh M.A. 2017. Moringa oleifera Root Induces Cancer Apoptosis More Effectively than Leave Nanocomposites and Its Free Counterpart. Asian Pacific Journal of Cancer Prevention. 1(8): 2141-2149.
Ambs S., Merriam W., Bennett W.P., Felley-Bosco E., Ogunfusika M.O., Harris C.C. 1998. Frequent nitric oxide synthase-2 expression in human colon adenomas: implication for tumor angiogenesis and colon cancer progression. Cancer Research. 58(2): 334-41.
Balogh J., Victor D., Asham E., Burroughs Sh., Boktour M., Monsour H P. 2016. Hepatocellular carcinoma: a review. Journal of Hepatocellular Carcinoma, 3: 41-53.
Bava S.V., Vineshkumar T., Anto R. 2005. Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-κB and the serine/threonine kinase Akt and is independent of tubulin polymerization. Journal of Biological Chemistry. 280(8): p. 6301-6308.
Aykanat N., Kacar S., Karakaya S., Shahinturk V. 2020. Silymarin suppresses HepG2 hepatocarcinoma cell progression through downregulation of Slit-2/Robo-1 pathway. Pharmacological Reports. 72(1): 199-207.
Cadigan, K.M. 2002. Wnt signaling--20 years and counting. Trends in Genetics. 18(7): p. 340-2.
Chuang S., Yeh P., Lu Y.S., Lai G.M., Liao C.M., Gao M., Cheng A.L. 2002. Basal levels and patterns of anticancer drug-induced activation of nuclear factor-κB (NF-κB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochemical pharmacology, 63(9): 1709-1716.
Clevers H. Wnt/beta-catenin signaling in development and disease. Cell, 2006. 127(3): 469-480.
Ally A, Laird P.W. 2017. Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell, 169(7): 1327-1341.
Cufí S., Bonavia R., Vazquez-Martin A., Corominas-Faja B., Micol V., Menendez J. 2013. Silibinin meglumine, a water-soluble form of milk thistle silymarin, is an orally active anti-cancer agent that impedes the epithelial-to-mesenchymal transition (EMT) in EGFR-mutant non-small-cell lung carcinoma cells. Food and Chemical Toxicology. 60: 360-368.
Cui, J., Gong Z., Shen H.M. 2013. The role of autophagy in liver cancer: molecular mechanisms and potential therapeutic targets. Biochimica et Biophysica Acta. 1836(1): 15-26.
Deep G., Gangar S., Rajamanickam S., Raina K., Gu M., Agarwal C., Oberlies N.H., Agarwal R. 2012. Angiopreventive efficacy of pure flavonolignans from milk thistle extract against prostate cancer: targeting VEGF-VEGFR signaling. PLoS One. 7(4): e34630.
Fukuda K., Taniguchi H., Koh T., Kunishima S., Yamagishi H. 2004. Relationships between oxygen and glucose metabolism in human liver tumours: positron emission tomography using (15)O and (18)F-deoxyglucose. Nuclear Medicine Communications. 25(6): 577-83.
Gallo D., Giacomelli S., Ferlini C., Raspaglio G., Apollonio P., Prislei C., Riva A., Morazzoni P., Bombardelli E., Scambia G. 2003. Antitumour activity of the silybin-phosphatidylcholine complex, IdB 1016, against human ovarian cancer. Eur J Cancer,. 39(16): 2403-24
Guarino, M., Rubino B., Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology. European Journal of Cancer. 39(3): 305-18.
He M., Zhang W., Dong Y., Wang L., Fang T., Tang W., Lv B., Chen G., Yang B., Huang P., Xia J. 2017. Pro-inflammation NF-κB signaling triggers a positive feedback via enhancing cholesterol accumulation in liver cancer cells. Journal of Experimental and Clinical Cancer Research. 36(1):.15.
Jiang C., Agarwal R., Lü 2000. Anti-angiogenic potential of a cancer chemopreventive flavonoid antioxidant, silymarin: inhibition of key attributes of vascular endothelial cells and angiogenic cytokine secretion by cancer epithelial cells. Biochemical and Biophysical Research Communications. 276(1): 371-8.
Jiang K., Wang W., Jin X., Wang Zh., Ji Zh., Meng G. 2015. Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells. Oncology Reports. 33(6): 2711-271
Kauntz H., Bousserouel S., Gosse F., Marescaux J., Raul F. 2012. Silibinin, a natural flavonoid, modulates the early expression of chemoprevention biomarkers in a preclinical model of colon carcinogenesis. International Journal of Oncology. 41(3): 849-54.
Khalaf A., Fuentes D., Morshid A.I., Burke M.R., Kaseb A.O., Hassan M., Hazle J.D., Elsayes K.M. 2018. Role of Wnt/β-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance. Journal of Hepatocellular Carcinoma. 5: 61-73.
Kim K.R., Moon H., Kim K.W. 2002. Hypoxia-induced angiogenesis in human hepatocellular carcinoma. Journal of molecular medicine. 80(11): 703-714.
Li L.Y., Xu T. 2019. ZEB1 regulates the activation of hepatic stellate cells through Wnt/β-catenin signaling pathway. European Journal of Pharmacology, 865: 172787.
Liu K., Min X., Peng J., Yang K., Yang L., Zhang X. 2016. The Changes of HIF-1α and VEGF Expression After TACE in Patients With Hepatocellular Carcinoma. Journal of Clinical Medicine Research, 8(4): 297-302.
Liu L., Xie S., Chen Y., Xue J., Zhang C., Zhu F. 2016. Aberrant regulation of Wnt signaling in hepatocellular carcinoma. World Journal of Gastroenterology, 22(33): 7486-99.
Lu L., Shao Y., Lee Y., Hsieh M., Cheng A., Hsu Ch. 2014. β-catenin (CTNNB1) mutations are not associated with prognosis in advanced hepatocellular carcinoma. Oncology, 87(3): 159-66.
Manna S.K., Mukhopadhyay A., Van N T., Aggarwal B., 1999. Silymarin suppresses TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosis. Journal of Immunology, 163(12): 6800-6809.
Mastron J.K., Siveen K., Sethi G., Bishayee A. 2015. Silymarin and hepatocellular carcinoma: a systematic, comprehensive, and critical review. Anticancer Drugs, 26(5): 475-86.
McKeown S. 2014. Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. The British Journal of Radiology. 87(1035): 20130676.
Mekuria A., Abdi A. 2017. Potential molecular targets and drugs for treatment of hepatocellular carcinoma. Journal of Cancer Science and Therapy. 9: 736-45.
Mohammadi-Bardbori, A., Nejati M., Esmaeili J., Ghafari H., Ghazi-Khansari M. 2008. Comparative measurement of in vitro paraquat and aflatoxin B1 cytotoxicity using three different cytotoxicity assays in pheochromocytoma cells (PC-12). Toxicology Mechanisms and Methods. 18(9): 685-689.
Shirabe K., Sugimachi K., Maehara Y. Review of angiogenesis in hepatocellular carcinoma. Hepatology Research. 45(1): 1-9.
Öztürk B., Kocaoğlu E.H., Durak Z.E. 2015. Effects of aqueous extract from Silybum marianum on adenosine deaminase activity in cancerous and noncancerous human gastric and colon tissues. Pharmacognosy Magazine. 11(41): 143-14
Pang R. Poon R.T. 2006. Angiogenesis and antiangiogenic therapy in hepatocellular carcinoma. Cancer Letters. 242(2): 151-67.
Patil M., Lee S.A., Macias E., Lam E.T., Chen X. 2009. Role of cyclin D1 as a mediator of c-Met- and beta-catenin-induced hepatocarcinogenesis. Cancer Research. 69(1): 253-261.
Ramakrishnan G., Elinos-Báez C., JaganS., Augustine TA., Kamaraj S., Anandakumar P., Devaki T. 2008. Silymarin downregulates COX-2 expression and attenuates hyperlipidemia during NDEA-induced rat hepatocellular carcinoma. Molecular and Cellular Biochemistry. 313(1-2): 53-61.
Riedl C.C., Brader P., Zanzonico P B., Chun Y Sh., Fong Y. 2008. Imaging hypoxia in orthotopic rat liver tumors with iodine 124-labeled iodoazomycin galactopyranoside PET. Radiology.. 248(2): 561-5
Zhurinsky J., Simcha I, Albanese C., D'Amico M., Pestell R., Ben-Ze'ev A. 1999. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proceedings of the National Academy of Sciences of the United States of America,. 96(10): 5522-552
Tetsu, O. McCormick 1999. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature, 398(6726): 422-6.
Tsujii, M., Kawano S., Tsuji S., Sawaoka H., Hori M., DuBois R. 1998. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell, 93(5): 705-16.
Cramer T, Höcker M, Finkenzeller G, Wiedenmann B, Rosewicz S. 2001. Dual mechanism of vascular endothelial growth factor upregulation by hypoxia in human hepatocellular carcinoma. Gut, 48(1): 87-96.
Wang H., Zhang J., Feng W., Zhang S., Liang H., Wang Y., Zheng Q., Li Z. 2007. PIN1 gene overexpression and beta-catenin gene mutation/expression in hepatocellular carcinoma and their significance. Journal of Huazhong University of Science and Technology Medical sciences, 27(1): 54-7.
Williams, C.S., Tsujii M., Reese J., Dey S., DuBois R.N. 2000. Host cyclooxygenase-2 modulates carcinoma growth. Journal of Clinical Investigation, 105(11): 1589-94.
Wu, K., Wu K., Ning Zh., Zeng J., Fan J., Wang X., He D. Silibinin inhibits β-catenin/ZEB1 signaling and suppresses bladder cancer metastasis via dual-blocking epithelial-mesenchymal transition and stemness. Cell Signaling Technology, 25(12): 2625-33.
Xiong, X.X., Qiu X., Hu D.X., Chen X.Q. 2017., Advances in Hypoxia-Mediated Mechanisms in Hepatocellular Carcinoma. Molecular Pharmacology, 92(3): 246-255.
Xu T., Guo P., Pi , He Y., Wei Y., Zhao L. 2020. Synergistic Effects of Curcumin and 5-Fluorouracil on the Hepatocellular Carcinoma In vivo and vitro through regulating the expression of COX-2 and NF-κB. J Cancer, 11(13): 3955-3964.
Yang, Z.F., Poon R.T. 2008. Anat Rec (Hoboken), 291(6): 721-34.
Zhu B., Lin N., Zhang M., Zhu Y., Cheng H., Chen Sh., Ling Y., Pan W., Xu R. 2015. Activated hepatic stellate cells promote angiogenesis via interleukin-8 in hepatocellular carcinoma. Journal of Translational Medicine, 13: 365.
_||_