طراحی سیستم استنتاج فازی جهت تشکیل سبد محصولات شرکت های داروسازی
محورهای موضوعی : مدیریت زنجیره تامین
محمدعلی افشارکاظمی
1
,
علی برخورداری
2
*
1 - مدیریت صنعتی،دانشکده مدیریت واقتصاد،دانشگاه آزاد اسلامی واحد علوم وتحقیقات تهران
2 - دکترای مدیریت صنعتی
کلید واژه: انتخاب محصول, استنتاج فازی, داروسازی,
چکیده مقاله :
هدف :انتخاب محصولات دارویی جدید که از میان محصولات موفق و پرفروش صورت می گیرد، یک امر خطیر و حائز اهمیت محسوب می شود.نکته ای که در فرایند توسعه سبدمحصول مشکل ساز بنظر می رسد آنالیز رقبای بالفعل و بالقوه و میزان موفقیت محصولات جدیددر کسب سهم از بازار دارویی می باشد.هدف این مقاله معرفی و طراحی سیستم استنتاج فازی برای ارزیابی سبد محصولات برای تولید در شرکت های داروسازی می باشد.
روش تحقیق:بدینمنظور، با استفاده از سیستم استنتاج فازی در دوره زمانی 1400 - 1403 سبد محصولات در داروسازی های ایران بررسی شد.
سيستم استنتاج فازی نگاشتی از فضای ورودی به خروجی است که با استفاده از توابع عضویت و قوانين فازی پياده سازی می شوند درواقع سيستمی است که تجربيات بشر را با توابع عضویت و قوانين فازی پياده سازی می کند و یک روش عمومی برای ترکيب دانش، فن آوری هوشمند، کنترل و تصميم گيری است، از مهم ترین الگوریتم های استنتاج فازی می توان به الگوریتم استنتاج ممدانی و تاکاگی سوگنو اشاره کردکه بيشترین کاربردها را دارند.دراین تحقیق ازسیستم استنتاج فازی ممدانی جهت شناسایی محصولات منتخب از نظر سه معیار حاشیه سود،سهم بازاروسهم از درامد شرکت استفاده گردیدنتایج نشان داد بـا سیسـتم خبـره فـازی وجود خطا درتصمیمگیری مرتبط با انتخاب سبدمحصولات تولیدی از میان انبوه محصولات قابل تولید به طور جشمگیری کاهش می یابد.لذا سیستم استنتاج فازی ابزرای کارآمد ومناسب برای ارزیابی محصولات وتشکیل سبد محصول تولید در صنایع داروسازی می باشد.
پیشنهاد: براساس نتایج،استفادهازسیستماستنتاج فازی در توسعه سبدمحصولات شرکتهابه ویژه درجامعهاماری موردتحقیق یعنی شرکت های داروسازی کشور مان ایران پیشنهاد میگردد.
Introduction: Selecting new pharmaceutical products from among successful and best-selling products is a serious and important matter. A point that seems to be problematic in the product portfolio development process is the analysis of actual and potential competitors and the success rate of new products in gaining market share. The aim of this article is to introduce and design a fuzzy inference system for evaluating product portfolios for production in pharmaceutical companies.
Methodology: For this purpose, using a fuzzy inference system, the product portfolios in Iranian pharmacies were examined during the period 1400-1403.A fuzzy inference system is a mapping from input to output space that is implemented using membership functions and fuzzy rules. In fact, it is a system that implements human experiences with membership functions and fuzzy rules and is a general method for combining knowledge, intelligent technology, control and decision-making. The most important fuzzy inference algorithms are the Mamdani and Takagi Sugeno inference algorithms, which have the most applications. In this study, the Mamdani fuzzy inference system was used to identify selected products in terms of three criteria: profit margin, market share and company revenue share.
.Results and Discussion: The results showed that with the fuzzy expert system, the existence of errors in decision-making related to the selection of a product portfolio from among the mass of products that can be produced is significantly reduced. Therefore, the fuzzy inference system is an efficient and suitable tool for evaluating products and forming a product portfolio in the pharmaceutical industry.
Conclusion: Based on the results, it is recommended to use a fuzzy inference system in developing companies'product portfolios, especially in the researched statistical population, namely pharmaceutical companies in our country, Iran.
افشار کاظمی،محمدعلی؛ابولفتحی ،احسان؛رجب پور، مجید؛ (1396)راهبردی نوین برای سیستم های پویابا به کار گیری نرم افزار MATLAB؛انتشارات دافوس اجا؛تهران؛ایران
امیدوار،معصومه؛افشارکاظمی،محمدعلی؛طلوعی،عباس؛شعار،مریم؛(1397)به کارگیری شبکه های مصنوعی وسیستم استنتاج فازیFalconبرای طراحی مدل کسب وکارمبتنی براینترنت اشیاء در حوزه پزشکی از راه دور؛پژوهش نامه مدیریت اجرایی؛سال دهم،شماره 20
امیری, صبا, نادری, نادر, محمدی فر, یوسف, & رضایی, بیژن. (1399). تدوین مؤلفههای اصلی رکود بنگاههای صنعتی غذایی و دارویی. مدیریت صنعتی, 12(1), 143-171. Doi
: 10.22059/imj.2020.291720.1007675
عالمتبریز, اکبر, & باقرزادهآذر, محمد.(1389). مدل تصمیم گیری فرآیند تحلیل شبکهای فازی برای گزینش تأمین کننده راهبردی. پژوهشنامه بازرگانی, 14(54), 57-86.
فرج پورخاناپشتانی،قاسم،وشاهمحمدی، مریم.(1394) بررسی عوامل موثر بر توسعه سبد محصولات شرکت های برتر دارویی کشوربهروش پرامته. کنفرانس ملی آینده پژوهی،علوم انسانی و توسعه. SID. https://sid.ir/paper/823486/fa
کدخدازاده،حمیدرضا؛مروتی شریف آبادی ،علی؛(1392)انتخاب تامین کنندگان با استفاده از سیستم استنتاج فازی؛مدیریت تولید وعملبات،دوره چهارم ،شماره 2
نجات نيا، مهديس؛ ماكوئي، احمد و جبارزاده، آرمين ( 1402 ). رتبه بندي شركت هاي حمل ونقل بين المللي ريلي ايران با.410 -386 (3) استفاده از مدل تصميم گيري چندمعياره پويا و سيستم استنتاج فازي. مديريت صنعتي، 15
نقیزاده, محمد,سیدنقوی, میرعلی,احسانی, راضیه. (1392). تاثیر قابلیتهای پویا بر توانمندی نوآوری محصول در بنگاه های بخش دارویی ایران', مدیریت نوآوری, 2(3), pp. 27-51.
Afshar Kazemi, Mohammad Ali; Abolfathi, Ahsan; Rajabpour, Majid; (2016) A new strategy for dynamic systems using MATLAB software, Dafos Eja Publishing, Tehran, Iran(in Persian)
Alam Tabriz, Akbar, & Bagherzadeh-Azer, Mohammad. (1389). Fuzzy network analysis process decision making model for strategic supplier selection. Business Journal, 14(54), 57-86. (in Persian)
Amiri, S., Naderi, N., Mohammadifar, Y., & Rezaee, B. (2020). Defining the Main Factors of the Stagnation of Food and Pharmaceutical Industrial Enterprises. Industrial Management Journal, 12(1), 143-171. Doi 10.22059/imj. 2020.291720. 1007675(in Persian)
Faraj Pourkhanapashtani, Qasem, and Shah Mohammadi, Maryam. (2014). Investigating the factors affecting the development of the product portfolio of the country's top pharmaceutical companies using the Paramet method. National Conference on Future Studies, Human Sciences and Development. SID. https://sid.ir/paper/823486/fa(in Persian)
kadhodazadeh, H., & Morovvati sharif abadi, A. (2013). Supplier Selection Using Fuzzy Inference System. Research in Production and Operations Management, 4(2), 113-132. (in Persian)
Naghizadeh, M., Seydnaghavi, M. A., & Ehsani, R. (2013). The Effects of Dynamic Capabilities on Product Innovation Capability in Iranian Pharmaceutical Firms. Innovation Management Journal, 2(3), 27-51. (in Persian)
Nejatnia, M., Makui, A., & Jabbarzadeh, A. (2023). Ranking Iran's International Rail Transportation Companies Using Dynamic Multi-criteria Decision-making and Fuzzy Inference System. Industrial Management Journal, 15(3), 386-410. doi: 10.22059/imj.2023.351139.1008004 (in Persian)
Omidvar, M., Afshar Kazemi, M., Tolouei, A., & Shoar, M. (2019). Application of Falcon Artificial Neural Networks and Fuzzy Inference System (F-ANFIS) for Designing an Internet-of-Things Based Business Model in the Field of Telemedicine. Journal of Executive Management, 10(20), 13-37. doi: 10.22080/jem.2019.14843. 0(in Persian)
Papageorgiou, E.(2009). "A new methodology for Decisions in Medical Informatics using fuzzy cognitive maps based on fuzzy rule- extraction techniques". Fuzzy Sets and Systems, 37(12), 7570-7580.