Enhancing the Functional Properties of LDPE for Active Packaging: The Role of Cloisite 30B-Ascorbyl Palmitate Hybrids in Inducing Antimicrobial and Antioxidant Activities
Subject Areas : Applied smart materials
Ramin Cheraghali
1
*
,
Gholamreza Khalaj
2
1 - Department of Chemistry, Sav.C, Islamic Azad University, Saveh, Iran
2 - گروه مهندسی مواد، واحد ساوه، دانشگاه آزاد اسلامی، ساوه، ایران
Keywords: Nanocomposite, Ascorbyl Palmitate, Active Packaging, Antioxidant, Antimicrobial Films,
Abstract :
This study presents a novel strategy for fabricating active food packaging by endowing low-density polyethylene (LDPE) films with antimicrobial and antioxidant properties. To achieve this, hybrid materials were synthesized by intercalating ascorbyl palmitate (AP) molecules into the galleries of Cloisite 30B nanoclays via an ultrasonication method. These Cloisite 30B-AP hybrids were subsequently incorporated into an LDPE matrix through melt-mixing to produce LDPE/(Cloisite 30B-AP) nanocomposite films. The structural properties of the synthesized hybrids and the resulting nanocomposite films were thoroughly characterized. Wide-angle X-ray diffraction (WAXD) analysis of the Cloisite 30B-AP hybrids revealed a significant increase in the d-spacing of the nanoclay compared to pristine Cloisite 30B. This expansion confirms the successful intercalation of AP molecules between the silicate layers. Furthermore, the WAXD pattern of the nanocomposite film indicated a high degree of dispersion of the Cloisite 30B-AP hybrids within the LDPE matrix. The optimized nanocomposite films demonstrated potent antimicrobial efficacy against both Gram-positive and Gram-negative bacterial strains. Concurrently, they exhibited substantial antioxidant activity, displaying a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity of up to 85%. Consequently, this work introduces a new, single active material—the Cloisite 30B-AP hybrid—that is highly effective at imparting dual-functionality, combining both antioxidant and antimicrobial characteristics, to polymeric food packaging materials.
[1] Peltzer, M., J. Wagner, and A. Jiménez. 2009. "Migration Study of Carvacrol as a Natural Antioxidant in High-Density Polyethylene for Active Packaging." Food Additives & Contaminants: Part A 26 (7): 938–46.
[2] Nand, A. V., S. Swift, B. Uy, and P. A. Kilmartin. 2013. "Evaluation of Antioxidant and Antimicrobial Properties of Biocompatible Low Density Polyethylene/Polyaniline Blends." Journal of Food Engineering 116 (2): 422–29.
[3] Byun, Y., Y. T. Kim, and S. Whiteside. 2010. "Characterization of an Antioxidant Polylactic Acid (PLA) Film Prepared with α-Tocopherol, BHT and Polyethylene Glycol Using Film Cast Extruder." Journal of Food Engineering 100 (2): 239–44.
[4] Shemesha, R., M. Krepker, D. Goldman, Y. Danin-Poleg, Y. Kashi, N. Nitzan, A. Vaxman, and Ester Segal. 2015. "Novel LDPE/Halloysite Nanotube Films with Sustained Carvacrol Release for Broad-Spectrum Antimicrobial Activity." Polymers for Advanced Technologies 26 (1): 110–16.
[5] Ramos, M., A. Jiménez, M. Peltzer, and M. C. Garrigós. 2012. "Characterization and Antimicrobial Activity Studies of Polypropylene Films with Carvacrol and Thymol for Active Packaging." Journal of Food Engineering 109 (3): 513–19.
[6] Dhende, V. P., S. Samanta, D. M. Jones, I. R. Hardin, and J. Locklin. 2011. "One-Step Photochemical Synthesis of Permanent, Nonleaching, Ultrathin Antimicrobial Coatings for Textiles and Plastics." ACS Applied Materials & Interfaces 3 (8): 2830–37.
[7] Yao, W.-H., J.-C. Chen, and C.-C. Chen. 2008. "Excellent Anti‐bacterial Activity and Surface Properties of Polyamide‐6 Films Modified with Argon‐plasma and Methyl Diallyl Ammonium Salt‐graft." Polymers for Advanced Technologies 19 (11): 1513–21.
[8] Merino, D., T. J. Gutiérrez, A. Y. Mansilla, C. A. Casalongué, and V. A. Alvarez. 2018. "Critical Evaluation of Starch-Based Antibacterial Nanocomposites as Agricultural Mulch Films: Study on Their Interactions with Water and Light." ACS Sustainable Chemistry & Engineering 6 (11): 15662–72.
[9] Liang, Z., M. Zhu, Y.-W. Yang, and H. Gao. 2014. "Antimicrobial Activities of Polymeric Quaternary Ammonium Salts from Poly(glycidyl methacrylate)s." Polymers for Advanced Technologies 25 (1): 117–22.
[10] Jokar, M., R. A. Rahman, N. A. Ibrahim, L. C. Abdullah, and C. P. Tan. 2012. "Melt Production and Antimicrobial Efficiency of Low-Density Polyethylene (LDPE)-Silver Nanocomposite Film." Food and Bioprocess Technology 5 (2): 719–28.
[11] Espitia, P. J. P., N. F. F. Soares, J. S. R. Coimbra, N. J. Andrade, R. S. Cruz, and E. A. Medeiros. 2012. "Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications." Food and Bioprocess Technology 5 (5): 1447–64.
[12] Mendoza, G., A. Regiel-Futyra, V. Andreu, V. Sebastián, A. Kyzioł, G. Stochel, and M. Arruebo. 2017. "Bactericidal Effect of Gold–Chitosan Nanocomposites in Coculture Models of Pathogenic Bacteria and Human Macrophages." ACS Applied Materials & Interfaces 9 (21): 17693–701.
[13] Wu, Y., Y. Qin, M. Yuan, L. Li, H. Chen, J. Cao, and J. Yang. 2014. "Characterization of an Antimicrobial Poly(lactic acid) Film Prepared with Poly(ε-caprolactone) and Thymol for Active Packaging." Polymers for Advanced Technologies 25 (9): 948–54.
[14] Ghadiri, M., W. Chrzanowski, and R. Rohanizadeh. 2015. "Biomedical Applications of Cationic Clay Minerals." RSC Advances 5 (37): 29467–81.
[15] Nand, A. V., S. Ray, J. Travas-Sejdic, and P. A. Kilmartin. 2012. "Characterization of Antioxidant Low Density Polyethylene/Polyaniline Blends Prepared via Extrusion." Materials Chemistry and Physics 135 (2-3): 903–11.
[16] Nand, A. V., S. Ray, J. Travas-Sejdic, and P. A. Kilmartin. 2012. "Characterization of Polyethylene Terephthalate/Polyaniline Blends as Potential Antioxidant Materials." Materials Chemistry and Physics 134 (2-3): 443–50.
[17] Wessling, C., T. Nielsen, A. Leufvén, and M. Jägerstad. 1998. "Mobility of α-Tocopherol and BHT in LDPE in Contact with Fatty Food Simulants." Food Additives and Contaminants 15 (6): 709–15.
[18] Wessling, C., T. Nielsen, and J. R. Giacin. 2000. "Antioxidant Ability of BHT- and α-Tocopherol-Impregnated LDPE Film in Packaging of Oatmeal." Journal of the Science of Food and Agriculture 81 (1): 194–201.
[19] Vulic, I., G. Vitarelli, and J. M. Zenner. 2002. "Structure-Property Relationships: Phenolic Antioxidants with High Efficiency and Low Colour Contribution." Polymer Degradation and Stability 78 (1): 27–34.
[20] Yoksan, R., J. Jirawutthiwongchai, and K. Arpo. 2010. "Encapsulation of Ascorbyl Palmitate in Chitosan Nanoparticles by Oil-in-Water Emulsion and Ionic Gelation Processes." Colloids and Surfaces B: Biointerfaces 76 (1): 292–97.
[21] Austria, R., A. Semenzato, and A. Bettero. 1997. "Stability of Vitamin C Derivatives in Solution and Topical Formulations." Journal of Pharmaceutical and Biomedical Analysis 15 (6): 795–801.
[22] Paneva, D., N. Manolova, M. Argirova, and I. Rashkov. 2011. "Antibacterial Electrospun Poly(ɛ-caprolactone)/Ascorbyl Palmitate Nanofibrous Materials." International Journal of Pharmaceutics 416 (1): 346–55.
[23] Hong, S.-I., and J.-W. Rhim. 2008. "Antimicrobial Activity of Organically Modified Nano-Clays." Journal of Nanoscience and Nanotechnology 8 (10): 5818–24.
[24] Rhim, J.-W., H.-M. Park, and C.-S. Ha. 2013. "Bio-Nanocomposites for Food Packaging Applications." Progress in Polymer Science 38 (10-11): 1629–52.
[25] Hsu, F., L. Zhang, H. Peng, J. Travas-Sejdic, and P. A. Kilmartin. 2008. "Scavenging of DPPH Free Radicals by Polypyrrole Powders of Varying Levels of Overoxidation and/or Reduction." Synthetic Metals 158 (21-24): 946–52.
[26] Hsu, C. F., H. Peng, C. Basle, J. Travas-Sejdic, and P. A. Kilmartin. 2011. "ABTS•+ Scavenging Activity of Polypyrrole, Polyaniline and Poly(3,4‐ethylenedioxythiophene)." Polymer International 60 (1): 69–77.
[27] Hu, Y., S. Song, J. Xu, L. Yang, Z. Chen, and W. Fan. 2001. "Synthesis of Polyurethane/Clay Intercalated Nanocomposites." Colloid and Polymer Science 279 (8): 819–22.
[28] Zink, J., T. Wyrobnik, T. Prinz, and M. Schmid. 2016. "Physical, Chemical and Biochemical Modifications of Protein-Based Films and Coatings: An Extensive Review." International Journal of Molecular Sciences 17 (9): 1376.
[29] Silvestre, C., D. Duraccio, and S. Cimmino. 2011. "Food Packaging Based on Polymer Nanomaterials." Progress in Polymer Science 36 (12): 1766–82.
[30] Tabak, M., R. Armon, G. Rosenblat, E. Stermer, and I. Neeman. 2003. "Diverse Effects of Ascorbic Acid and Palmitoyl Ascorbate on Helicobacter Pylori Survival and Growth." FEMS Microbiology Letters 224 (2): 247–53.
[31] Schwope, A. D., D. E. Till, D. J. Ehntholt, K. R. Sidman, R. H. Whelan, P. S. Schwartz, and R. C. Reid. 1987. "Migration of BHT and Irganox 1010 from Low-Density Polyethylene (LDPE) to Foods and Food-Simulating Liquids." Food and Chemical Toxicology 25 (4): 317–26.