Enhancing Nanofiber Fabrication and Adsorption Efficiency via Electrocentrifugal Spinning: A Sustainable Solution for Wastewater Treatment
Subject Areas : نانومواد و پلیمرهای هوشمند
Peiman Valipour
1
,
Saeedeh Rafiei
2
*
1 - دانشکده مهندسی نساجی، پوشاک و مد، واحد قائم شهر، دانشگاه آزاد اسلامی
2 - Assistant Professor, Carpet Department, Shiraz University of Arts, Shiraz, Iran,
Keywords: nanofibers, electrocentrifugal spinning, wastewater treatment, adsorption, polyacrylonitrile, textile dye removal,
Abstract :
Electrocentrifugal spinning (ECS) has emerged as a promising alternative to conventional electrospinning for fabricating high-performance nanofibers, addressing key limitations such as high-voltage requirements and low production rates. In this study, polyacrylonitrile (PAN) nanofibers were synthesized via ECS and systematically compared with electrospun fibers in terms of morphology, production efficiency, and adsorption performance. ECS produced fibers with 40% smaller diameters (225–316 nm), a 33% higher dye adsorption capacity, and a 68% increase in production rate. Adsorption kinetics for Reactive Blue 13 followed a pseudo-second-order model (R² = 0.98), indicating chemisorption, while isotherm data fit the Langmuir model (qm = 96.15 mg/g, R² = 0.99). ECS achieved superior dye removal efficiency (90%) compared to electrospinning (72%) and forcespinning (82%). These results demonstrate that ECS is a scalable and economically viable method for mass-producing high-efficiency nanofibers, with significant potential for industrial wastewater treatment applications.
1. Ahmed, F. E., Lalia, B. S., & Hashaikeh, R. (2015). A review on electrospinning for membrane fabrication: challenges and applications. Desalination, 356, 15-30. 2. Ahmed, J., Gultekinoglu, M., & Edirisinghe, M. (2024). Recent developments in the use of centrifugal spinning and pressurized gyration for biomedical applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, e1916. 3. Andrady, A. L. (2008). Science and technology of polymer nanofibers. John Wiley & Sons. 4. Badrossamay, M. R., McIlwee, H. A., Goss, J. A., & Parker, K. K. (2010). Nanofiber assembly by rotary jet-spinning. Nano Letters, 10(6), 2257-2261. 5. Cengiz, F., Krucinska, I., Gliścińska, E., Chrzanowski, M., & Göktepe, F. (2009). Comparative analysis of various electrospinning methods of nanofiber formation. Fibres & Textiles in Eastern Europe, 1(72), 13-19. 6. Chen, C., Dirican, M., & Zhang, X. (2019). Centrifugal spinning—high rate production of nanofibers. In Electrospinning: Nanofabrication and Applications (pp. 321-338). William Andrew Publishing. 7. Chen, J., Yu, Z., Li, C., Lv, Y., Hong, S., Hu, P., & Liu, Y. (2022). Review of the principles, devices, parameters, and applications for centrifugal electrospinning. Macromolecular Materials and Engineering, 307(8), 2200057. 8. Dabirian, F., Hosseini Ravandi, S. A., & Pishevar, A. (2011). A comparative study of jet formation and nanofiber alignment in electrospinning and electrocentrifugal spinning systems. Journal of Electrostatics, 69(6), 540-546. 9. Dabirian, F., Hosseini Ravandi, S. A., & Pishevar, A. (2013). The effects of operating parameters on the fabrication of polyacrylonitrile nanofibers in electro-centrifuge spinning. Fibers and Polymers, 14, 1497–1504. 10. Dos Santos, D. M., Paula, S., Oliveira, A., & Pereira, J. (2020). Advances in functional polymer nanofibers: From spinning fabrication techniques to recent biomedical applications. ACS Applied Materials & Interfaces, 12(41), 45673-45701. 11. Dosunmu, O., Chase, G. G., Kataphinan, W., & Reneker, D. H. (2006). Electrospinning of polymer nanofibers from multiple jets on a porous tubular surface. Nanotechnology, 17(4), 1123. 12. He, J., & Zhou, Y. (2019). Multineedle electrospinning. In Electrospinning: Nanofabrication and Applications (pp. 201-218). Elsevier. 13. Hoffmann, A., & Kuehne, A. J. (2021). High throughput centrifugal electrospinning of polyacrylonitrile nanofibers for carbon fiber nonwovens. Polymers, 13(8), 1313. 14. Huttunen, M., & Kellomäki, M. (2011). A simple and high production rate manufacturing method for submicron polymer fibers. Journal of Tissue Engineering and Regenerative Medicine, 5(8), e239-e243. 15. Keirouz, A., Wang, Z., Reddy, V. S., Nagy, Z. K., Vass, P., Buzgo, M., Ramakrishna, S., & Radacsi, N. (2023). The history of electrospinning: past, present, and future developments. Advanced Materials Technologies, 8, 2201723. 16. Khajavi, R., & Najaf Abadi, S. (2015). Measurements of specific surface area of materials specially fibers: a review. Journal of Textile Science and Technology, 5(2), 3-10. 17. Li, Y., Zhu, J., Cheng, H., Li, G., Cho, H., Jiang, M., Gao, Q., & Zhang, X. (2021). Developments of advanced electrospinning techniques: a critical review. Advanced Materials Technologies, 6(11), 2100410. 18. Migliaresi, C., Ruffo, G. A., Volpato, F., & Zeni, D. (2012). Advanced electrospinning setups and special fiber and mesh morphologies. In Electrospinning for Advanced Biomedical Applications and Therapies. In Materials Science, Engineering (pp. 23-68). Smithers Rapra, United Kingdom. 19. Muller, F., Jokisch, S., Bargel, H., & Scheibel, T. (2020). Centrifugal electrospinning enables the production of meshes of ultrathin polymer fibers. ACS Applied Polymer Materials, 2(11), 4360-4367. 20. Natarajan, T. S., & Bhargava, P. (2018). Influence of spinning parameters on synthesis of alumina fibers by centrifugal spinning. Ceramics International, 44(10), 11644-11649. 21. Nasouri, K., Shoushtari, A. M., & Khamforoush, M. (2013). Comparison between artificial neural network and response surface methodology in the prediction of the production rate of polyacrylonitrile electrospun nanofibers. Fibers and Polymers, 14, 1849-1856. 22. Rafiei, S. (2014). Electrospinning process: a comprehensive review and update. Applied Method Polym Res Technol, 1, 1-100. 23. Rafiei, S. (2015). A very detailed review on application of nanofibers in energy and environmental. In A. K. Haghi, & B. S. Gupta (Eds.), Nanomaterials and Nanotechnology for Composites (pp. xx-xx). Apple Academic Press, New York. 24. Rafiei, S. (2016). Updates on two different nanofiber production techniques. Polymers Research Journal, 10(2). 25. Rafiei, S. (2017). A comparative study on electrocentrifuge spinning and electrospinning process as two different nanofiber creation techniques. In Applied Chemistry and Chemical Engineering (Vol. 4, pp. 325-341). Apple Academic Press, New York. 26. Rafiei, S. (2018). Nanofiber production capability of electro-centrifuge technique. In Engineering Technology and Industrial Chemistry with Applications (pp. 125-142). Apple Academic Press. 27. Rafiei, S. (2020). Optimization and production of polyacrylonitrile based activated carbon nanofibers for dye wastewater treatment. Journal of Color Science and Technology, 14(4), 281-294. 28. Rafiei, S., Noroozi, B., Arbab, M., & Haghi, A. (2014). Characteristic assessment of stabilized polyacrylonitrile nanowebs for the production of activated carbon nano-sorbents. Chinese Journal of Polymer Science, 32, 449-457. 29. Regel, L. L., & Wilcox, W. R. (1997). Centrifugal materials processing. In Centrifugal Materials Processing (pp. 1-15). Springer. 30. Riahi, D. (2020). On forcespinning of nonlinear rotating jets of viscoelastic Boger fluids. Journal of Non-Newtonian Fluid Mechanics, 287, 104442. 31. Robinson, A. J., Johnson, K., Smith, L., & Thompson, M. (2021). Comparative analysis of fiber alignment methods in electrospinning. Matter, 4(3), 821-844. 32. Sarkar, K., Gomez, C., Zambrano, S., Ramirez, M., de Hoyos, E., Vasquez, H., & Lozano, K. (2010). Electrospinning to forcespinning. Materials Today, 13(11), 12-14. 33. Sarkar, K., Pandey, R., Chattopadhyay, A., et al. (2023). Advanced nozzle designs and scalable forcespinning processes. Materials Today. 34. Senthilram, T., Mary, L. A., Venugopal, J. R., Nagarajan, L., Ramakrishna, S., & Dev, V. R. G. (2011). Self-crimped and aligned fibers. Materials Today, 14(5), 226-229. 35. Stojanovska, G., et al. (2018). Lignin-based nanofibers produced via forcespinning and their notable applications in wastewater treatment. [Add volume/page details if available] 36. Suresh, S., Becker, A., & Glasmacher, B. (2020). Impact of apparatus orientation and gravity in electrospinning—A review of empirical evidence. Polymers, 12(11), 2448. 37. Teo, W. E., & Ramakrishna, S. (2006). A review on electrospinning design and nanofibre assemblies. Nanotechnology, 17(14), R89. 38. Thomas, S., Grohens, Y., & Ninan, N. (Eds.). (2014). Foundations of nanotechnology, volume two: nanoelements formation and interaction. CRC Press, New York. 39. Treviño, D. A. (2022). Development of an electro-centrifugal spinning setup for nanofiber production research. (Master’s thesis, The University of Texas Rio Grande Valley). 40. Watanabe, Y., & Sato, H. (2011). Review fabrication of functionally graded materials under a centrifugal force. In M. E. Shanchez-Villacis (Ed.), Nanocomposites with Unique Properties and Applications in Medicine and Industry (pp. 150). InTech. http://dx.doi.org/10.5772/20988 41. Yarin, A., & Zussman, E. (2004). Upward needleless electrospinning of multiple nanofibers. Polymer, 45(9), 2977-2980. 42. Zhang, Z. M., Duan, Y. S., Xu, Q., & Zhang, B. (2019). A review on nanofiber fabrication with the effect of high-speed centrifugal force field. Journal of Engineered Fibers and Fabrics, 14, 1558925019867517.