تغییرات سطح برگ ذرت در لایه های مختلف کانوپی تحت تأثیر تداخل دورهای جمعیت طبیعی علفهای هرز
محورهای موضوعی : بوم شناسی گیاهان زراعی
1 - عضو هیآت علمی آزاد اسلامی واحد میانه
کلید واژه: علف هرز, ذرت, ساختار کانوپی, تداخل دوره&rlm, ای, سطوح کانوپی,
چکیده مقاله :
به منظور بررسی تغییرات سطح برگ ذرت در سطوح مختلف کانوپی تحت تأثیر تداخل دوره ای علف های هرز، آزمایشی در دانشگاه مازندران در سال زراعی 1385 در قالب طرح بلوک های کامل تصادفی در سه تکرار انجام شد. تیمارها شامل تداخل جمعیت طبیعی علف های هرز مزرعه با ذرت تا مراحل چهار، شش، هشت و ده برگی، تاسل دهی و دو هفته بعد از تاسل دهی ذرت بود. تیمارهای کشت خالص ذرت (بدون علف هرز) و تداخل تمام فصل علف های هرز با ذرت نیز به عنوان شاهد در نظر گرفته شد. داده های این آزمایش از طریق نمونه برداری از تعداد و سطح برگ ذرت در لایه های مختلف کانوپی (5/0-0، 1-5/0، 5/1-1، 2-5/1 و 2< متر)، در اواخر دوره رشد ذرت به دست آمد. نتایج نشان داد که افزایش طول دوره تداخل علف های هرز تأثیر معنی داری بر تعداد برگ در هر بوته ذرت نداشت، ولی سطح برگ در بوته ذرت به طور معنی دار تحت تأثیر تداخل دوره ای علف های هرز قرار گرفت. با افزایش طول دوره تداخل علف های هرز به بیش از شش برگی ذرت، سطح برگ در هر بوته به طور معنی دار کاهش نشان داد و به کمتر از یک متر مربع در هر بوته رسید. با افزایش طول دوره تداخل، ساختار کانوپی ذرت تغییر یافته و بیشترین درصد سطح برگ به سطوح بالایی کانوپی انتقال یافت، ولی درصد سطح برگ اختصاص یافته به لایه های پایینی کانوپی نیز تقریبا ثابت ماند. نتایج این مطالعه نشان می دهد که افزایش طول دوره تداخل علف های هرز فقط باعث کاهش سطح برگ در بوته می گردد و تقریبا تأثیری بر تعداد برگ در هر بوته ندارد. ذرت نیز برای جبران کاهش سطح برگ اقدام به اختصاص سطح برگ بیشتر به لایه های بالایی کانوپی می نماید که باعث تغییر در ساختار کانوپی می گردد.
In order to study the effect of periodical weed interference on corn leaf area, a field experiment was conducted at Mazandaran university, Iran in 2006. Eight experimental treatments were arranged in randomized complete block design with three replications. The treatments were represented as weed interference up to 4, 6, 8 and 10-leaf, tasseling, and two weeks after tasseling stages. The weed interference up to harvest and weed-free up to harvest stage treatments were also considered as control. The corn leaf area influenced significantly by periodical weed interference but leaf number per plant was not affected by durational weed interference. Greatest corn leaf area was observed in weed free up to harvest (control) and weed interference up to 4 leaf stage treatments. Increasing weed interference period more than corn 6 leaf stage significantly reduced corn leaf area to lesser than 1 m2 per plant. Long term weed competition changed the corn canopy structure so that the greatest leaf area percentage was attributed to upper levels of canopy. However, leaf area percentage remained constant in lower canopy levels. Results showed that increasing of weed interference period reduced corn leaf area but did not affect leaf numbers per plant and corn compensated this deficiency by changing canopy structure and attributing more leaf area to higher levels of canopy.
1- احتشامی، س.م.ر. و م.ر. چائی چی. 1380. تأثیر زمان وجین بر ترکیب گونهای، تراکم و وزن خشک علفهای هرز در سویا (.Glycine max L. Merr). مجله علوم کشاورزی ایران، 32: 25-30.
2- حاج سید هادی، م.ر.، ا. زند، م. نصیری محلاتی، ح. رحیمیان مشهدی و ق. نورمحمدی. 1384. بررسی ساختار کانوپی سیبزمینی در شرایط رقابت با علفهای هرز. اولین همایش علوم علفهای هرز ایران، 379-385.
3- رحیمی، ا.، ح. رحیمیان مشهدی، م. آقاعلیخانی و م. کریمی کلاله. 1384. بررسی تغییرات ماده خشک در طبقات کانوپی ذرت در شرایط رقابت با تاجخروس. اولین همایش علوم علفهای هرز ایران، 354- 359.
4. Aghaalikhani, M. and Yaghoobi, S. R. 2008. Critical period of weed control in winter canola (Brassica napus L.) in west of Tehran. Pakistan Journal of Biological Science 6: 773-777.
5. Begna, S. H., Hamilton, R. I., Dwyer, L. M., Stewart, D. W., Cloutier, D., Assemat, L., Foroutan-Pour, K. and Smith, D. L. 2001. Weed biomass production response to plant spacing and corn (Zea mays) hybrids differing in canopy architecture. Weed Technology 15: 647-653.
6. Bond, W. and Grundy, A. C. 2001. Non-chemical weed management in organic farming systems. Weed Research 41: 383-405.
7. Cavero, J., Zaragoza, C., Bastiaans, L., Suso, M. L. and Pardo, A. 2000. The relevance of morphological plasticity in the simulation of competition between maize and Datura stramonium. Weed Research 40: 163-180.
8. Cavero, J., Zaragoza, C., Suso, M. L. and Pardo, A. 1999. Competition between maize and Datura stramonium in an irrigated field under semi-arid conditions. Weed Research 39: 225-240.
9. Hall, M. R., Swanton, C. J. and Anderson, G. N. 1992. The critical period of weed control in grain corn (Zea mays L.). Weed Science 40: 441-447.
10. Knezevic, S. T., Vanderlip, R. L. and Horak, M. J. 2001. Relative time of redroot pigweed emergence affects dry matter partitioning. Weed Science 49: 617-621.
11. Kropff, M. J., Spitters, C. J. T., Schnieders, B. J., Joenje, W. and De Groot, W. 1992. An eco-physiological model for interspecific competition, applied to the influence of Chenopodium album L. on sugar beet. II. Model evaluation. Weed Research 32: 451-463.
12. Lemerle, D., Verbeek, B., Cousens, R. D. and Coombes, N. 1996. The potential for selecting wheat varieties strongly competitive against weeds. Weed Research 36: 505-513.
13. Lindquist, J. L. and Mortensen, D. A. 1998. Tolerance and velvetleaf (Abutilon theophrasti) suppressive ability of two old and two modern corn (Zea mays) hybrids. Weed Science 46: 569-574.
14. Lindquist, J. L., Mortensen, D. A. and Johnson, B. E. 1998. Mechanisms of corn tolerance and velvetleaf suppressive ability. Agronomy Journal 90: 787-792.
15. Ni, H., Moody, K., Robles, R. P., Paller, E. C. and Lales, J. S. 2000. Oryza sativa plant traits conferring competitive ability against weeds. Weed Science 48: 200-204.
16. Seavers, G. P. and Wright, K. J. 1999. Crop canopy development and structure influence weed suppression. Weed Research 39: 319-328.
17. Sinoquet, H. and Caldwell, R. M. 1995. Estimation of light capture and partitioning in intercropping systems. In:H. Sinoquet and P. Cruz (eds.): Ecophysiology of Tropical Intercropping. Paris: Institut National de la Recherche Agronomique (INRA). Pp. 79-80.
18. Steinmaus, S. J. and Norris, R. F. 2002. Growth analysis and canopy architecture of velvetleaf grown under light conditions representative of irrigated Mediterranean-type agroecosystems. Weed Science 50: 42–53.
19. Teasdale, J. R. 1995. Influence of narrow row/high population corn (Zea mays L.) on weed control and light transmittance. Weed Technology 9: 113–118.
20. Tremmel, D. C. and Bazzaz, F. A. 1993. How neighbour canopy architecture affects target plant performance. Ecology 74: 2114–2124.
21.Van Acker, R, C., Swanton, C. J. and Weise, S. F.1993. The critical period of weed control in soybean (Glycine max L. Merr.). Weed Science41: 194-200.
22. Woolley, B. L., Michaels, T. E., Hall, M. R. and Swanton, C. J. 1993. The critical period of weed control in white bean (Phaseoulus vulgaris L.). Weed Science 41: 180-184.
23. Yaghoobi, S. R. and Siyami, K. (2008) Effect of different periodical weed interference on yield and yield component in winter canola (Brassica napus L.). Asian Journal of plant Science 7: 413-416.
_||_