کارآیی روش ژئوپدولوژی در نقشهبرداری خاکهای زراعی اراضی پایاب سد آیدوغموش میانه
محورهای موضوعی : بوم شناسی گیاهان زراعیناصر نظری 1 * , شهلا محمودی 2 , محمدحسن مسیحآبادی 3
1 - دانشآموخته دکتری گروه خاکشناسی
دانشکده کشاورزی و منابع طبیعی
واحد میانه
دانشگاه آزاد اسلامی
مبانه، ایران
2 - استاد گروه خاکشناسی
واحد علوم و تحقیقات
دانشگاه آزاد اسلامی
تهران، ایران
3 - استادیار گروه خاکشناسی
واحد علوم و تحقیقات
دانشگاه آزاد اسلامی
تهران، ایران
کلید واژه: تفرّق خاک, سطوح ژئومرفیک, لندفرم, نقشه خاک, منطقه تعمیم, منطقه نمونه,
چکیده مقاله :
چکیده یکی از روش های سیستماتیک برای تجزیه و تحلیل سطوح ژئومرفیک در نقشه برداری خاک که عملیات صحرایی را عمدتاً بر مبنای کار در منطقه نمونه پایه ریزی می کند، روش ژئوپدولوژی می باشد. هدف این تحقیق تعیین میزان اعتبار تعمیم پذیری نتایج حاصل از روش ژئوپدولوژی برای اشکال اراضی مشابه در منطقه میانه-استان آذربایجان شرقی بود. به این منظور مطالعه تفرق خاک با استفاده از اندازه گیری آن در یک توالی سلسله مراتبی از سطوح رده بندی خاک و مقایسه ی واحدهای مشابه در روش ژئوپدولوژیک با استفاده از شاخص های تفرق صورت گرفت. پس از تهیه نقشه تفسیری اولیه روی عکس های هوایی با مقیاس 1:20000، واحد HPu211 که بیشترین مساحت از محدوده مطالعاتی را دربرمی گرفت، انتخاب گردید و تعداد 15 پروفیل خاک با فواصل تقریبی 150 متر در این واحد، حفر، تشریح و نمونه برداری شدند. میزان قابلیت تعمیم نتایج روش ژئوپدولوژی برای واحد مزبور، از طریق حفر نُه پروفیل خاک دیگر در یک واحد مشابه موجود در خارج از منطقه ی نمونه که منطقه تعمیم نامیده شده است، مورد بررسی قرار گرفت. بر اساس نتایج شاخص تفرق شانن از سطح رده به سمت فامیل خاک، در هر دو منطقه نمونه و تعمیم، افزایش می یابد؛ لیکن تنها در سطح فامیل، تفاوت معنی داری بین میانگین تفرق خاک های دو منطقه در سطح اعتماد 95% وجود دارد. افزایش تفرق خاک ها در خلال سلسله مراتب رده بندی خاک، حتی با تغییر مقیاس درک و تمرکز بر توالی افق های ژنتیکی پروفیل های حفر شده در مناطق نمونه و تعمیم نیز به اثبات رسید. بنابراین، به منظور افزایش دقت نتایج روش ژئوپدولوژی، استفاده از فازهای لندفرم ها و نیز تعیین فاز خانواده خاک و یا فاز سری خاک برای هر یک از حالت های لندفرم توصیه می شود.
ABSTRACT The geopedological method is one of the systematic methods for analyzing geomorphic surfaces in soil mapping in which field work is mainly based on work in the sample area. This research intended to investigate the degree of validity generalization of results obtained in the geopedological method for similar landforms in the Miyaneh region of East Azarbaijan Province. For this purpose, soil diversity study was conducted through measuring it in a hierarchical sequence in USDA soil taxonomy levels and by comparing similar units in the geopedological method through employing diversity and similarity indices. After preparing the initial interpretative map (based on aerial photographs) at a scale of 1:20000, the HPu211 unit that covered the greatest delineation of study area was selected and 15 soil profiles, about 150 meters apart, were excavated, described, and sampled in this unit. The degree of validity generalization of geopedological results for the mentioned unit was determined by digging nine other soil profiles in a similar unit, called the generalization area, which was located outside of the sample area. Results indicated the value of Shannon’s diversity index increased from the level of soil order to soil family in both the sample and the generalization areas; however, only at the soil family level were there significant differences between soil diversity in the two areas at the confidence level of 95%. Even by changing the understanding level, and through concentrating on the sequence of genetic horizons in the excavated profiles in the sample and generalization areas, increased soil diversity in the soil taxonomic hierarchy was proved. Therefore, it is recommended that landform phases be used, and soil family phase and/or soil series phase be determined for each landform phase, to increase the accuracy of the geopedological method.
References
10. McBratney AB, Minasny B (2007) On measuring pedodiversity. Geoderma. 141: 149-154.
11. Rossiter, DG (2000) Lecture notes and reference methodology for soil resource inventories. Secondrevised version, Institute for aerospace survey and earth sciences (International Institute for Geo-Information Science and Earth Observation), Enschede.
12. Rossiter DG, Girma A, Henneman R, Siderus W ( 2001) Summary of investigation, 1997-2000 by ITC. Technical report, International Institute for Geo-Information Science and Earth Observation. Soil Science Division, Netherlands, 31pp.
13. Saldana A, Ibanez JJ (2004) Pdodiversity analysis at large scales: An example of there fluvial terrain of the Henares River (Central Spain) Geoderma 62: 123-138.
14. Schoenberger PJ, Wysocki DA, Benham EC, Broderson WD (2012) Field Book for Describing and Sampling Soils (3rd edition.) Natural resources Conservation Service, National Soil Survey Center, Lincoln, Nebraska.
15. Sharma VAk (2006) Mapping of the Soil. Science Publishers: New Hampshire.
16. Toomanian N, Jalalian A, Khademi H, Eghbal Mk, Papritz A (2006) Pedodiversity and pedogenesis in Zayandeh-rud valley, Central Iran. Geomorphology 81: 376-393.
17. Udomsri S (2006) Application of computer assisted geopedology to predictive soil mapping and its use in assessing soil erosion prone areas: a case study of Doi Ang Khang, Ang Khang Royal Agricultural Station, Thailand. Master Thesis, International Institute for Geo-Information Science and Earth Observation (ITC), Enschede, The Netherlands.
18. Western S (1978) Soil survey contracts and quality control. Clarendon Press: Oxford, England.
19. Wolda H (1981) Similarity indices, sample size and diversity. Oecologia 50: 296-302.
20. Zhu JX, Hudson B, Burt J, Lubich K, Simonson D (2001) Soil mapping using GIS, expert knowledge and fuzzy logic, Soil Science Society of American Journal 65: 1463-1472.
21. Zinck JA (1989) Physiography and soils, Lecture notes for soil students. Soil Science Division, Soil survey courses subject matter, K6 ITC, Enschede, The Netherlands.
_||_