شناسایی متغیرهای غیرشکننده اقلام تعهدی بر اساس رویکردهای بیزین غیرخطی در بازار سرمایه ایران
محورهای موضوعی : اقتصاد سنجی مالی و روشهای کمّی
اعظم رضائیان جویباری
1
,
جمادوردی گرگانلی دوجی
2
*
,
مجید اشرفی
3
,
علی خامکی
4
1 - گروه حسابداری، واحد علیآباد کتول، دانشگاه آزاد اسلامی، علیآباد کتول، ایران.
2 - گروه حسابداری، واحد علیآباد کتول، دانشگاه آزاد اسلامی، علیآباد کتول، ایران.
3 - گروه حسابداری، واحد علیآباد کتول، دانشگاه آزاد اسلامی، علیآباد کتول، ایران.
4 - گروه حسابداری، واحد علیآباد کتول، دانشگاه آزاد اسلامی، علیآباد کتول، ایران.
کلید واژه: مدیریت سود, اقلام تعهدی, میانگینگیری بیزین,
چکیده مقاله :
هدف: عموماً مدلهای اقلام تعهدی در محیط کشورهای پیشرفته (بازار سرمایه عمیق) شکل گرفتهاند. پژوهشی که باتوجهبه عدم توسعهیافتگی و شرایط خاص بازار سرمایه کشور، اقدام به مدلسازی اقلام تعهدی نماید، بسیار نادر است؛ در پژوهش حاضر سعی شده است برای تعیین مدل اقلام تعهدی کارا با استفاده از رویکردهای نوین میانگینگیری بیزین با تأکید بر TVP-BMA، TVP-DMA و TVP-DMS در مقایسه با رگرسیون سنتی (OLS) اقدام به شناسایی متغیرهای غیرشکننده مؤثر بر اقلام تعهدی در بازار سرمایه ایران نماییم.
روششناسی پژوهش: روش تحقیق حاضر از لحاظ هدف کاربردی است. نمونه آماری پژوهش شامل 171 شرکت بورسی در دوره زمانی 1390 تا 1400 میباشد.
یافتهها: در این پژوهش متغیرهای بکار رفته مؤثر بر اقلام تعهدی در پژوهشهای پیشین وارد مدلهای بیزین و سنتی گردیدند. نتایج بیانگر این است که از میان مدلهای بررسی و آزمون شده در پژوهش، مدل BMA با شاخصهای ارزیابی عملکرد پیشبینی مدل بهعنوان کاراترین مدل تعیین گردید. بر اساس مدل BMA، تعداد 10 متغیر غیرشکننده مؤثر بر اقلام تعهدی شناسایی شدند.
اصالت / ارزشافزوده علمی: شناسایی متغیرهای مؤثر بر تخمین اقلام تعهدی با دادههای شرکتهای موردمطالعه بهمنظور بومیسازی و تعیین اعتبار مدل با کمک میانگینگیری بیزین جهت مدلسازی از مشخصه متمایز به کار گرفته شده در پژوهش است. ضمن اینکه جهت جامعیت در مدلسازی از هر سه نوع مدلهای اقلام تعهدی اختیاری (تأکید بر داراییها و فروش، هزینههای اختیاری)، مدل درآمد اختیاری (تأکید بر سود، درآمد و جریان وجه نقد) و مدلهای ترکیبی در طراحی مدل بهینه به کار گرفته شده است.
Purpose: Accrual models have generally been developed in the context of developed countries with deep capital markets. However, due to the underdeveloped nature and specific characteristics of the Iranian capital market, studies aiming to model accruals in such environments are rare. This research seeks to identify robust predictors of accruals in Iran’s capital market by developing an efficient accrual model using advanced Bayesian model averaging techniques—namely Time-Varying Parameter Bayesian Model Averaging (TVP-BMA), TVP Dynamic Model Averaging (TVP-DMA), and TVP Dynamic Model Selection (TVP-DMS)—and comparing them with the traditional Ordinary Least Squares (OLS) approach.
Research Methodology: This applied study analyzes data from 171 publicly listed companies on the Tehran Stock Exchange over the period 2011 to 2021 (1390–1400 SH). Variables previously identified in the literature as determinants of accruals were incorporated into both Bayesian and traditional models.
Findings: Among the evaluated models, the BMA model outperformed others in terms of prediction performance indicators and was identified as the most efficient. According to the BMA results, 10 robust predictors were identified as significant influencers of accruals.
Originality / Value: This study contributes to the literature by identifying the most influential variables in estimating accruals based on firm-level data, thereby enabling the localization and validation of accrual models through Bayesian averaging. A distinguishing feature of the research is the integration of all three major categories of accrual models: discretionary accruals models (focused on assets, sales, and discretionary expenses), discretionary revenue models (focused on income, earnings, and cash flows), and hybrid models, for designing an optimal specification adapted to the Iranian context.
Abdi, M., Hosseini, S. A., & Gholam Abri, A. (2022). Stock return prediction modeling: A new approach to Bayesian dynamic averaging models and time-varying parameters. Advances in Finance and Investment, 2(4), 111–138. [In Persian]
Anna, S. (2021). Historical development of earnings management models. SHS Web of Conferences, 92, Article 02058.
Ball, R. (2013). Accounting informs investors and earnings management is rife: Two questionable beliefs. Accounting Horizons, 27(4), 847–853.
Barker, R., Penman, S., Linsmeier, T. J., & Cooper, S. (2020). Moving the conceptual framework forward: Accounting for uncertainty. Contemporary Accounting Research, 37(1), 322-357.
Bouzhmehrani, E., Kamyabi, Y., & Malekian, E. (2020). Timing of cash flows and economic events: A model for classifying accruals. Journal of Management Accounting and Auditing Knowledge, 9(33), 268–284. [In Persian]
Breuer, M., & Schütt, H. H. (2023). Accounting for uncertainty: An application of Bayesian methods to accruals models. Review of Accounting Studies, 28(2), 726–768.
Caylor, M. L. (2010). Strategic revenue recognition to achieve earnings benchmarks. Journal of Accounting and Public Policy, 29(1), 82–95.
Christensen, T. E., D'Adduzio, J., & Nelson, K. K. (2023). Explaining accruals quality over time. Journal of Accounting and Economics, 76(1), Article 101575.
Dechow, P. M. (1994). Accounting earnings and cash flows as measures of firm performance: The role of accounting accruals. Journal of accounting and economics, 18(1), 3-42.
Dechow, P. M., & Dichev, I. D. (2002). The quality of accruals and earnings: The role of accrual estimation errors. The accounting review, 77(s-1), 35-59.
Dechow, P. M., Richardson, S. A., & Tuna, I. A. (2003). Why are earnings kinky? An examination of the earnings management explanation. Review of Accounting Studies, 8(2-3), 355–384.
Dechow, P. M., Sloan, R. G., & Sweeney, A. P. (1995). Detecting earnings management. Accounting review, 193-225.
Deniz, P., & Stengos, T. (2023). Revisiting the determinants of consumption: A Bayesian model averaging approach. Journal of Risk and Financial Management, 16(3), Article 190.
Feltham, G. A., & Ohlson, J. A. (1995). Valuation and clean surplus accounting for operating and financial activities. Contemporary accounting research, 11(2), 689-731.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis Boca Raton: Chapman. Hall/CRC.
Ghorbani, A. and Vadiei Noghabi, M. H. (2018). Algebraic and Empirical Models for Specification and Control of Characteristics Affecting Accrual-generating Process. Applied Research in Financial Reporting, 7(1), 7-42. [In Persian]
Hajireza, M. , Darabi, R. and Najafimoghadam, A. (2023). Entropy of Accrual Items of Modified Jones Model and Financial Stability and Their Estimation Based on Whale and Genetics Algorithm. Empirical Research in Accounting, 13(3), 211-236. [In Persian]
Islam, M. A., Ali, R., & Ahmad, Z. (2011). Is modified Jones model effective in detecting earnings management? Evidence from a developing economy. International Journal of Economics and Finance, 3(2), 116–125.
Johnstone, D. (2018). Accounting theory as a Bayesian discipline. Foundations and Trends in Accounting, 13(1-2), 1–266.
Jones, J. J. (1991). Earnings management during import relief investigations. Journal of Accounting Research, 29(2), 193–228.
Kang, S.-H. (2005). A conceptual and empirical evaluation of accrual prediction models [Working paper]. SSRN.
Kang, S.-H., & Sivaramakrishnan, K. (1995). Issues in testing earnings management and an instrumental variable approach. Journal of Accounting Research, 33(2), 353–367.
Karimi, J., & Karimi Potanlar, S. (2022). Modeling factors affecting tax evasion in Iran's economy based on the Bayesian averaging approach. Quarterly Journal of Economic Research and Policies, 29(100), 105–152. [In Persian]
Kasznik, R. (1999). On the association between voluntary disclosure and earnings management. Journal of Accounting Research, 37(1), 57–81.
Koop, G., McIntyre, S., Mitchell, J., & Poon, A. (2020). Regional output growth in the United Kingdom: More timely and higher frequency estimates from 1970. Journal of Applied Econometrics, 35(2), 176–197.
Kothari, S. P., Leone, A. J., & Wasley, C. E. (2005). Performance matched discretionary accrual measures. Journal of Accounting and Economics, 39(1), 163–197.
Lewis, C. M. (2012). Risk modeling at the SEC: The accounting quality model [Speech transcript]. U.S. Securities and Exchange Commission.
Mohammadi, T., Khiabani, N., Bahrami, J., & Fahimifar, F. (2020). Comparison of different methods of predicting Iran's economic growth with an emphasis on dynamic model selection and dynamic model averaging. Quarterly Journal of Economic Research, 20(4), 93–123. [In Persian]
Mozafarnia, M., Fallahshams, M. F., & Zomorodian, G. (2022). Regime dependent effects and cyclical volatility spillover of exchange rate and stock prices in Iran. Advances in Finance and Investment, 2(4), 107–129. [In Persian]
Naser, H. (2014). An econometric investigation of forecasting GDP, oil prices, and relationships among GDP and energy sources [Doctoral dissertation, University of Sheffield]. White Rose eTheses Online.
Ohlson, J. A. (1995). Earnings, book values, and dividends in equity valuation. Contemporary accounting research, 11(2), 661-687.
Pham, D. H., & Hoang, H. A. (2023). Capital structure and practices of accrual-based earnings management among non-financial Vietnamese listed firms. Investment Management & Financial Innovations, 20(4), 182.
Ronen, J., & Yaari, V. L. (2008). Earnings management: Emerging insights in theory, practice, and research. Springer. https://doi.org/10.1007/978-0-387-25771-6
Sala-i-Martin, X., Doppelhofer, G., & Miller, R. I. (2004). Determinants of long-term growth: A Bayesian averaging of classical estimates (BACE) approach. American economic review, 94(4), 813-835.
Saqafi, A. , Blue, G. and Sohrabi Varzaneh, H. (2022). An Accruals Quality Model: A Group Method of Data Handling Approa. Empirical Studies in Financial Accounting, 19(75), 1-40. [In Persian]
Scott, W. R. (2009). Financial accounting theory (5th ed.). Prentice Hall.
Sheikhli, S. , Nasiri Aqhdam, A. , Amadeh, H. and Doroodian, H. (2023). Modelling of Banking Crisis Forecasting in Iran by BMA. Quarterly Journal of Applied Theories of Economics, 9(4), 1-36. [In Persian]
Siekelova, A., Belas, J., Podhorska, I., & Durana, P. (2021). Accrual-Based Earnings Management: A Case Study in V4 Focusing on Mining And Quarrying Sector. Acta Montanistica Slovaca, 26(1), 70–83.
Stock, J. H., & Watson, M. W. (2002). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association, 97(460), 1167–1179.
Stock, J. H., & Watson, M. W. (2002). Macroeconomic forecasting using diffusion indexes. Journal of Business & Economic Statistics, 20(2), 147–162.
Stubben, S. R. (2010). Discretionary revenues as a measure of earnings management. The Accounting Review, 85(2), 695–717.
Viana Junior, D. B. C. (2021). Cross-country differences in earnings management: The role of economic and institutional factors [Unpublished doctoral dissertation]. ISCTE - Instituto Universitário de Lisboa.