Distributed Agreement Based Ml Approximation
Subject Areas : B. Computer Systems OrganizationMohamad Mohamadi 1 , Hamid Parvin 2 * , Eshagh Faraji 3 , Sajad Parvin 4
1 - Department of Computer Engineering, Nourabad Mamasani Branch, Islamic Azad University, Nourabad Mamasani, Iran
2 - Department of Computer Engineering, Nourabad Mamasani Branch, Islamic Azad University, Nourabad Mamasani, Iran|Young Researchers and Elite Club, Nourabad Mamasani Branch, Islamic Azad University, Nourabad Mamasani, Iran
3 - Department of Computer Engineering, Nourabad Mamasani Branch, Islamic Azad University, Nourabad Mamasani, Iran|Young Researchers and Elite Club, Nourabad Mamasani Branch, Islamic Azad University, Nourabad Mamasani, Iran
4 - Department of Computer Engineering, Nourabad Mamasani Branch, Islamic Azad University, Nourabad Mamasani, Iran
Keywords: Data Fusion, Maximum Likelihood Approximation, Consensus Algorithm, Homography,
Abstract :
In this manuscript we suggest a fast adaptive distributed method for maximum likelihood approximation (MLA) in multiple view object localization problem. For this purpose, we use "up to scale" property of projective geometry and by defining coefficients for convergence criterion, we increase the convergence speed of the consensus algorithm. We try to present a mathematical model for the problem. We use two types of error function. The proposed method uses maximum likelihood for obtaining its best parameters. Our approach utilizes "up to scale" property in projective geometry to reach the consensus quickly. The difference between nodes' values and meanwhile consensus values are evaluated by two error functions. To estimate consensus value in the second error function, we used local weighted average of each node. At the last of the paper, we prove our claims by experimental results.