ساخت جاذب سرامیکی نانو کامپوزیت اصلاح شده با کربن فعال حاصل از لاستیک های فرسوده برای جذب یون های فلزات سنگین
محورهای موضوعی : شیمی و مهندسی شیمی کلیه گرایش هامحمد طاهر شفیعی سیف آبادی 1 , نادر مختاریان 2 , نبیه فرهامی 3 , علی آقابابایی بنی 4 *
1 - گروه مهندسی شیمی، دانشکده فنی و مهندسی، واحد شهرضا، دانشگاه آزاد اسلامی، شهرضا، ایران
2 - گروه مهندسی شیمی، دانشکده فنی و مهندسی، واحد شهرضا، دانشگاه آزاد اسلامی، شهرضا، ایران
3 - گروه شیمی، واحد ماهشهر، دانشگاه آزاد اسلامی، ماهشهر، ایران
4 - گروه مهندسی شیمی، دانشکده فنی و مهندسی، واحدشهرکرد، دانشگاه آزاد اسلامی،شهرکرد، ایران
کلید واژه: جذب سطحی, یون های فلزات سنگین, پساب, سرامیک نانوکامپوزیت, خاک رس, کربن فعال,
چکیده مقاله :
با توجه به افزایش آلودگی محیط زیست ناشی از پسابهای حاوی یونهای فلزات سنگین، این مطالعه به طراحی و ساخت جاذب نانوکامپوزیتی با هدف جذب پایدار یونهای سرب و کادمیوم از پساب پرداخته است. در این تحقیق، از خاک رس بهعنوان ماده اولیه جاذب و کربن فعال حاصل از لاستیک فرسوده برای اصلاح سرامیک استفاده شد. مشخصات فیزیکوشیمیایی نانوکامپوزیت با استفاده از FTIR، XRD، BET و FESEM بررسی شد. آزمایشات جذب با پساب حاوی سرب و کادمیوم در یک تجهیز بستر ثابت با بررسی تاثیر عوامل مختلف مانند pH، دما، دوز جاذب، غلظت یونهای فلزات سنگین و زمان ماند بهینهسازی شد. شرایط بهینه برای فرآیند جذب شامل pH 6، دمای 33، غلظت اولیه mg/L 104.2 ، جرم جاذب 170 گرم و زمان ماند 101 دقیقه بهدست آمد. همچنین، مدلهای سینتیکی و ایزوترم جذب برای تحلیل فرآیند جذب استفاده شد.
Given the increasing environmental pollution caused by wastewater containing heavy metal ions, this study focuses on the design and construction of a nanocomposite adsorbent for the sustainable adsorption of lead and cadmium ions from wastewater. In this research, clay was used as the primary material for the adsorbent, and activated carbon derived from waste tires was employed to modify the ceramic. The physicochemical properties of the nanocomposite were characterized using FTIR, XRD, BET, and FESEM techniques. Adsorption experiments were conducted with wastewater containing lead and cadmium ions in a fixed-bed reactor, investigating the effect of various factors such as pH, temperature, adsorbent dosage, heavy metal ion concentration, and contact time for optimization. The optimal conditions for the adsorption process were found to be pH 6, temperature 33°C, initial concentration of 104.2 mg/L, adsorbent mass of 170 g, and a contact time of 101 min. Kinetic models and adsorption isotherms were used to analyze the adsorption process.
[1] F. Mohammadi, T. Mohammadi, Optimal conditions of porous ceramic membrane synthesis based on alkali activated blast furnace slag using Taguchi method, Ceram. Int. 43 (2017) 14369–14379. https://doi.org/10.1016/j.ceramint.2017.07.197.
[2] V.B. Yadav, R. Gadi, S. Kalra, Clay based nanocomposites for removal of heavy metals from water: A review, J. Environ. Manage. 232 (2019) 803–817. https://doi.org/10.1016/j.jenvman.2018.11.120.
[3] M.C. Tomei, D. Mosca Angelucci, A.J. Daugulis, Towards a continuous two-phase partitioning bioreactor for xenobiotic removal, J. Hazard. Mater. 317 (2016) 403–415. https://doi.org/10.1016/j.jhazmat.2016.05.092.
[4] M.J. Akbarzadeh, S. Hashemian, N. Mokhtarian, Study of Pb(II) removal ZIF@NiTiO3nanocomposite from aqueous solutions, J. Environ. Chem. Eng. 8 (2020) 103703. https://doi.org/10.1016/j.jece.2020.103703.
[5] M.F. Tajuddin, A. Al-Gheethi, R. Mohamed, E. Noman, B.A. Talip, A. Bakar, Optimizing of heavy metals removal from car wash wastewater by chitosan-ceramic beads using response surface methodology, Mater. Today Proc. 31 (2020) 43–47. https://doi.org/10.1016/j.matpr.2020.01.085.
[6] K. Sao, M. Pandey, P.K. Pandey, F. Khan, Highly efficient biosorptive removal of lead from industrial effluent, Environ. Sci. Pollut. Res. 24 (2017) 18410–18420. https://doi.org/10.1007/s11356-017-9413-7.
[7] Z.P. Nodeh, A.A. Beni, A.J. Moghadam, Development of evaporation technique for concentrating lead acid wastewater from the battery recycling plant, by nanocomposite ceramic substrates and solar/wind energy, J. Environ. Manage. 328 (2023) 116980. https://doi.org/10.1016/j.jenvman.2022.116980.
[8] P. Wang, Q. Sun, Y. Zhang, J. Cao, Synthesis of zeolite 4A from kaolin and its adsorption equilibrium of carbon dioxide, Materials (Basel). 12 (2019) 1–12. https://doi.org/10.3390/ma12091536.
[9] P. Wang, Q. Sun, Y. Zhang, J. Cao, Effective removal of methane using nano-sized zeolite 4A synthesized from kaolin, Inorg. Chem. Commun. 111 (2020) 107639. https://doi.org/10.1016/j.inoche.2019.107639.
[10] A. Hernández-Palomares, F. Espejel-Ayala, Precipitated silica, alkali silicates and zeolites from construction and demolition waste materials, J. Clean. Prod. 348 (2022). https://doi.org/10.1016/j.jclepro.2022.131346.
[11] A. Ech-Charef, A. Dekayir, G. Jordán, M. Rouai, A. Chabli, A. Qarbous, F.Z. El Houfy, Soil heavy metal contamination in the vicinity of the abandoned Zeïda mine in the Upper Moulouya Basin, Morocco. Implications for airborne dust pollution under semi-arid climatic conditions, J. African Earth Sci. 198 (2023). https://doi.org/10.1016/j.jafrearsci.2022.104812.
[12] C.G. Okoye-Chine, M. Moyo, X. Liu, D. Hildebrandt, A critical review of the impact of water on cobalt-based catalysts in Fischer-Tropsch synthesis, Fuel Process. Technol. 192 (2019) 105–129. https://doi.org/10.1016/j.fuproc.2019.04.006.
[13] J. Tan, H. Yi, Z. Zhang, D. Meng, Y. Li, L. Xia, S. Song, L. Wu, R.M.T. Sáncheze, M.E. Farías, Montmorillonite facilitated Pb(II) biomineralization by Chlorella sorokiniana FK in soil, J. Hazard. Mater. 423 (2022). https://doi.org/10.1016/j.jhazmat.2021.127007.
[14] V. V. Kulkarni, A.K. Golder, P.K. Ghosh, Synthesis and characterization of carboxylic cation exchange bio-resin for heavy metal remediation, J. Hazard. Mater. 341 (2018) 207–217. https://doi.org/10.1016/j.jhazmat.2017.07.043.
[15] T.O. Ajiboye, O.A. Oyewo, D.C. Onwudiwe, Simultaneous removal of organics and heavy metals from industrial wastewater: A review, Chemosphere. 262 (2021) 128379. https://doi.org/10.1016/j.chemosphere.2020.128379.
[16] K. Kundu, A. Afshar, D.R. Katti, M. Edirisinghe, K.S. Katti, Composite nanoclay-hydroxyapatite-polymer fiber scaffolds for bone tissue engineering manufactured using pressurized gyration, Compos. Sci. Technol. 202 (2021) 108598. https://doi.org/10.1016/j.compscitech.2020.108598.
[17] X. Liu, H. Pang, X. Liu, Q. Li, N. Zhang, L. Mao, M. Qiu, B. Hu, H. Yang, X. Wang, X. Liu, H. Pang, X. Liu, Q. Li, N. Zhang, L. Mao, M. Qiu, B. Hu, H. Yang, X. Wang, Orderly Porous Covalent Organic Frameworks-based Materials : Superior Adsorbents for Pollutants Removal from Aqueous Solutions Orderly Porous Covalent Organic Frameworks-based Materials : Superior Adsorbents for Pollutants Removal from Aqueous Solutions, Innov. 2 (2021) 100076. https://doi.org/10.1016/j.xinn.2021.100076.
[18] S. Mnasri-Ghnimi, N. Frini-Srasra, Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays, Appl. Clay Sci. 179 (2019) 105151. https://doi.org/10.1016/j.clay.2019.105151.
[19] M. Mouiya, A. Abourriche, A. Bouazizi, A. Benhammou, Y. El Hafiane, Y. Abouliatim, L. Nibou, M. Oumam, M. Ouammou, A. Smith, H. Hannache, Flat ceramic microfiltration membrane based on natural clay and Moroccan phosphate for desalination and industrial wastewater treatment, Desalination. 427 (2018) 42–50. https://doi.org/10.1016/j.desal.2017.11.005.
[20] M. Mouiya, A. Bouazizi, A. Abourriche, A. Benhammou, Y. El Hafiane, M. Ouammou, Y. Abouliatim, S.A. Younssi, A. Smith, H. Hannache, Fabrication and characterization of a ceramic membrane from clay and banana peel powder: Application to industrial wastewater treatment, Mater. Chem. Phys. 227 (2019) 291–301. https://doi.org/10.1016/j.matchemphys.2019.02.011.
[21] E. Padilla-Ortega, R. Leyva-Ramos, J. V. Flores-Cano, Binary adsorption of heavy metals from aqueous solution onto natural clays, Chem. Eng. J. 225 (2013) 535–546. https://doi.org/10.1016/j.cej.2013.04.011.
[22] P. Sáez, I.A. Dinu, A. Rodríguez, J.M. Gómez, M.M. Lazar, D. Rossini, M.V. Dinu, Composite cryo-beads of chitosan reinforced with natural zeolites with remarkable elasticity and switching on/off selectivity for heavy metal ions, Int. J. Biol. Macromol. 164 (2020) 2432–2449. https://doi.org/10.1016/j.ijbiomac.2020.08.009.
[23] J.A. Muñoz, Y.N. Mata, M.L. Blázquez, A. Ballester, F. González, Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus, J. Hazard. Mater. 158 (2008) 316–323. https://doi.org/10.1016/j.jhazmat.2008.01.084.
[24] A. Vidoni, P.I. Ravikovitch, M. Afeworki, D. Calabro, H. Deckman, D. Ruthven, Microporous and Mesoporous Materials Adsorption of CO 2 on high silica MFI and DDR zeolites : Structural defects and differences between adsorbent samples, Microporous Mesoporous Mater. 294 (2020) 109818. https://doi.org/10.1016/j.micromeso.2019.109818.