مطالعه پتروگرافی و ژئوشیمیایی کانسار باریت حور، استان کرمان
محورهای موضوعی : کاربرد شیمی در محیط زیستبرزو رحیم دشتی 1 * , فرهاد احیا 2 , سارا ملکی خیمه سری 3 , Alireza Zarasvandi 4
1 - دانشگاه آزاد اسلامی واحد بهبهان
2 - عضو هیت علمی دانشگاه آزاد بهبهان
3 - گروه زمین شناسی دانشگاه آزاد اسلامی واحد بهبهان
4 - Geochemical Exploration - Department of Geology, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
کلید واژه: باریت, ژئوشیمی, پتروگرافی, کانسار حور,
چکیده مقاله :
کانسار باریت حور، واقع در واحدهای رسوبی ماسهسنگی و شیلی، به عنوان یک کانسار هیدروترمال رگهای در محیط قارهای شکل گرفته است. این پژوهش با هدف بررسی زمینشیمی و کانیشناسی این کانسار و تعیین منشأ و شرایط تشکیل آن انجام شد. توزیع عناصر نادر خاکی (REEs) در نمونههای باریت نشاندهنده غنیشدگی از عناصر نادر خاکی سبک (LREE) نسبت به عناصر نادر خاکی سنگین (HREE) و وجود آنومالیهای مثبت Ce و منفی Eu است که به شرایط اکسایش-کاهش خاصی در محیط تشکیل اشاره دارد. مقادیر پایین ΣREEs و نسبتهای LREE/HREE در باریتهای کانسار حور نیز دلالت بر منشأ هیدروترمالی این کانسار دارند. علاوه بر این، شواهد ساختاری و بافتی، از جمله حضور رگههای چند مرحلهای و خردشدگی بلورها، تأیید میکنند که کانیسازی باریت در این منطقه تحت تأثیر فرآیندهای تکتونیکی و سیالات هیدروترمالی صورت گرفته است. نتایج این پژوهش نشان میدهد که کانسار باریت حور مشابه با ذخایر گرمابی در محیطهای قارهای بوده و منشأ آن از سیالات هیدروترمالی است که در شرایط تکتونیکی فعال به رگهها و رگچههای باریت منجر شده است.
The Hour Barite deposit, located within sedimentary units of sandstone and shale, has formed as a hydrothermal vein-type deposit in a continental environment. This study aims to investigate the geochemistry and mineralogy of this deposit, as well as to determine its origin and formation conditions. The distribution of rare earth elements (REEs) in the barite samples indicates enrichment of light rare earth elements (LREEs) relative to heavy rare earth elements (HREEs), along with the presence of positive Ce and negative Eu anomalies, which suggest specific oxidation-reduction conditions in the formation environment. The low ΣREEs values and LREE/HREE ratios in the Hour deposit's barites further indicate a hydrothermal origin for this deposit. Additionally, structural and textural evidence, including the presence of multi-phase veins and crystal fragmentation, confirm that barite mineralization in this area was influenced by tectonic processes and hydrothermal fluids. The results of this study suggest that the Hour Barite deposit is similar to other hydrothermal deposits in continental environments, with its origin attributed to hydrothermal fluids that, under active tectonic conditions, led to the formation of barite veins and vein
Ali, A. M., Messaoud, H., 2019. Barium sulphate deposits. Energy Procedia 157, 879-891. https://doi.org/10.1016/j.egypro.2018.11.254.
Alizadeh-Kouskuie, A., Atapour, H., Rahmani, F., 2020. Assessing the geochemical and environmental baseline of heavy metals in soils around hydrothermal hematite–barite–galena veins in Baghin area, Kerman, Iran. Environmental Geochemistry and Health42, 4011-4036. https://doi.org/10.1007/s10653-020-00660-w
Alzughoul, K. A., Ibrahim, K. M., Khoury, H. N., Farouk, S., Maynard, J. B., 2022. Mineralogy, geochemistry, and stable isotope characteristics of barite deposits from Wadi El Mingar, North Eastern Jordan. Neues Jahrbuch Geol. Palaontol. Abhand., 123-142. https://doi.org/10.1127/njgpa/2022/1039
Appel, P.W.U., 1983. Rare earth element in the early Archaen Isua iron-formation, west Greenland. Precambrian Research 20, 243- 258. https://doi.org/10.1016/0301-9268(83)90075-X
Canet, C., Anadón, P., González-Partida, E., Alfonso, P., Rajabi, A., Pérez-Segura, E., Alba-Aldave, L. A., 2014. Paleozoic bedded barite deposits from Sonora (NW Mexico): Evidence for a hydrocarbon seep environment of formation. Ore Geology Reviews 56, 292-300. https://doi.org/10.1016/j.oregeorev.2013.06.009
Cansu, Z., Öztürk, H., 2020. Formation and genesis of Paleozoic sediment-hosted barite deposits in Turkey. Ore Geology Reviews 125, 103700. https://doi.org/10.1016/j.oregeorev.2020.103700
de Sao ˜ Jos´e, J.F.B., Cherubin, M.R., Vargas, L.K., Lisboa, B.B., Zanatta, J.A., Araújo, E.F., Bayer, C., 2023. A soil quality index for subtropical sandy soils under different Eucalyptus harvest residue managements. J. For. Res. 34, 243–255. http://dx.doi.org/10.1007/s11676-022-01507-z
Dora, M.L., Roy, S.K., Khan, M., Randive, K., Kanungo, D.R., Barik, R., Kaushik, C.S., Bari, S.H., Pattanayak, R.S., Krishna, K.V.S., Mayachar, G.K., 2022. Rift-induced structurally controlled hydrothermal barite veins in 1.6 Ga granite, Western Bastar Craton, Central India: constraints from fluid inclusions, REE geochemistry, sulfur and strontium isotopes studies. Ore Geol. Rev. 148, 105050. https://doi.org/10.1016/j.oregeorev.2022.105050
Ebunu, A. I., Olanrewaju, Y. A., Ogolo, O., Adetunji, A. R., Onwualu, A. P., 2021. Barite as an industrial mineral in Nigeria: occurrence, utilization, challenges and future prospects. Heliyon 710.1016/j.heliyon.2021.e07365
Ehya, F., Mazraei, S. M., 2017. Hydrothermal barite mineralization at Chenarvardeh deposit, Markazi Province, Iran: evidences from REE geochemistry and fluid inclusions. Journal of African Earth Sciences134, 299-307. 10.1016/j.jafrearsci.2016.11.006
Guichard, F., Church, T.M., Treuil, M., Jaffrezic, H., 1979. Rare earths in barites: distribution and effects on aqueous partitioning. Geochim. Cosmochim. Acta 43, 983–997. https://doi.org/10.1016/0016-7037(79)90088-7
Hall, D. M., Lvov, S. N., Gamwo, I. K., 2022. Prediction of Barium Sulfate Deposition in Petroleum and Hydrothermal Systems. In Solid–Liquid Separation Technologies 101-122). CRC Press.
Heijlen, W., Vos, K., Kartalis, N., Boyce, A. J., Muchez, P., 2024. The formation of vein-type barite (±base metal, gold) deposits in northern Madagascar and its link with Mesozoic Pangean rifting. Mineralium Deposita 59, 255-273.
Hormozi, H.K., Ehya, F., Paydar, G.R., kHeymehsari, S., 2023, Formation of barite in the Ab Torsh deposit, Kerman province, Iran: Insights from rare earth elements, O and S isotopes, and fluid inclusions, Geochemistry 83 1- 14. https://doi.org/10.1016/j.
Jiang, S.Y., Zhao, H.X., Chen, T.Y., Yang, T., Yang, J.H. and Ling, H.F., 2007. Trace and rare earth element geochemistry of phosphate nodules from the Lower Cambrian blak shale sequence in the Mufu Mountain of Nanjing, Jiangsu Province China. Chemical Geology, 244(3-4): 584- 604. http://dx.doi.org/10.1016/j.chemgeo.2007.07.010
Karadag, M.M., Kupeli, S., Arik, F., Ayhan, A., Zedef, V., and Doyen, A., 2009. Rare earth element (REE) geochemistry and genetic implications of the Mortas bauxite deposit (Seydisehir/konya-Southern Turkey). Chemie der Erde- Geochemistry 69, 143- 159. http://dx.doi.org/10.1016%2Fj.chemer.2008.04.005
Keveshk, H. H., Ehya, F., Paydar, G. R., Kheymehsari, S. M., 2021. Rare earth elements geochemistry, O and S isotopic compositions, and microthermometric data of barite from the Kuh–Ghalagheh deposit, Markazi Province, Iran. Applied Geochemistry 135, 105128. 10.1016/j.apgeochem.2021.105128
Kursun, G. B., Yalcin, M. G., 2020. Origin of barite deposits in dolomite-limestone units, Gazipasa, Eastern of Antalya: Geology, geochemistry, statistics, sulfur isotope composition. Mining of Mineral Deposits, 14, 62-71 https://www.mendeley.com/catalogue/c23e9b5b-a51e-3919-935c-f1b21d1633e3/
Middleton, J. T., Hong, W. L., Paytan, A., Auro, M. E., Griffith, E. M., Horner, T. J., 2023. Barium isotope fractionation in barite–fluid systems at chemical equilibrium. Chemical Geology 627, 121453. https://doi.org/10.1016/j.chemgeo.2023.121453
Pattan, J.N., Pearce, N.J.G., Mislankar, P.G., 2005. Constraints in using Cerium-anomaly of bulk sediments as an indicator of paleo bottom water redox environment: a case study from the Central Indian Ocean Basin. Chem. Geol. 221, 260–278. https://doi.org/10.1016/j.chemgeo.2005.06.009
Song, Y. C., Liu, Y. C., Hou, Z. Q., Fard, M., Zhang, H. R., Zhuang, L. L., 2019. Sediment-hosted Pb–Zn deposits in the Tethyan domain from China to Iran: characteristics, tectonic setting, and ore controls. Gondwana Research 75, 249-281. 10.1016/j.gr.2019.05.005
Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Its Evolution. Blackwell, Oxford, p. 312p.
Torres, M. E., Brumsack, H. J., Bohrmann, G., Emeis, K. C., 1996. Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chemical Geology 127, 125-139. https://doi.org/10.1016/0009-2541(95)00090-9
Weber, J., Bracco, J. N., Yuan, K., Starchenko, V., Stack, A. G., 2021. Studies of mineral nucleation and growth across multiple scales: review of the current state of research using the example of barite (BaSO4). ACS Earth and Space Chemistry 5, 3338-3361. https://doi.org/10.1021/acsearthspacechem.1c00055
Zhou, Z., Wen, H., Qin, C., de Fourestier, J., Liu, L., Shi, Q., 2018. The genesis of the Dahebian Zn-Pb deposit and associated barite mineralization: Implications for hydrothermal fluid venting events along the Nanhua Basin, South China. Ore Geology