مروری بر ارتباط وسایل نقلیه هوشمند خودمختار با تعاملات بینایی انسان و کامپیوتر
محورهای موضوعی : سیستمهای مکاترونیک
علی رحیمی قاسم آبادی
1
,
محمدرضا ذبیحی
2
,
فرزاد چراغپور سموتی
3
1 - دانش آموخته مقطع کارشناسی ارشد، گروه مهندسی مکانیک- گرایش طراحی کاربردی، آزمایشگاه تحقیقاتی سامانه های مکانیکی هوشمند، واحد علوم و فناوری پردیس، دانشگاه آزاد اسلامی، تهران، ایران
2 - دانشجوی مقطع کارشناسی ارشد، گروه مهندسی مکانیک آزمایشگاه تحقیقاتی سامانه های مکانیکی هوشمند, واحد علوم و فناوری پردیس, دانشگاه آزاد اسلامی, تهران, ایران
3 - استادیار، گروه مهندسی مکانیک، واحد پردیس، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: هوش مصنوعی, حمل و نقل هوشمند, رابط مغز و کامپیوتر (BCI), ابزار کمکی, تعاملات بینایی انسان و کامپیوتر .,
چکیده مقاله :
وسایل نقلیه هوشمند و خودمختار, یک ابزارهوشمند حمل و نقل جهت رفاه حال سالمندان، بیماران و افرادی که دارای محدودیت حرکتی هستند میباشد. با استفاده از تکنولوژی های مختلف از جمله رابطهای ارتباطی مغز و رایانهها با ماشینها متصل میکنند. جهت دریافت اطلاعات محیط اطراف و بررسی داده ها توسط رایانه ی تعبیه شده و تصمیم گیری با استفاده از هوش مصنوعی و ارسال فرمان های متناسب به سنسور ها, به منظور جهت یابی, تشخیص موانع ثابت و متحرک, فرد دچار مشکل حرکتی را از داشتن همراه و یا کنترل دستی وسیله نقلیه بی نیاز میکند. مصرف کننده تمام فرمانها و تنظیمات مورد نظر را شخصی سازی میکند. مسیر یابی ایمن, موثر و دقیق کاملا توسط محاسبات ابزار هوش مصنوعی کامپیوتری تعبیه شده و ارسال فرامین به سنسور ها انجام میشود.
Smart and autonomous vehicles are a smart transportation tool for the well-being of the elderly, patients and people with limited mobility. They connect cars using various technologies, including brain-computer interfaces. In order to receive information about the surrounding environment and examine the data by the embedded computer and make decisions using artificial intelligence and send appropriate commands to the sensors, in order to navigate, detect fixed and moving obstacles, the person with mobility problems does not need to have a companion or manually control the vehicle. The user personalizes all the desired commands and settings. Safe, effective and accurate routing is completely done by the calculations of the embedded computer artificial intelligence tool and sending commands to the sensors.
[1] M. a. N. M. (. P. R. 9. (. 7. Lebedev, "Brain-machine interfaces: from basic science to europrostheses and neurorehabilitation.," Physiological reviews, vol. 97, no. American Physiological Society Bethesda, MD, pp. 767-837, 2017.
[2] R. a. V. A. Ramadan, "Brain computer interface: control signals review," Neurocomputing, vol. 223, no. Elsevier, pp. 26-44, 2017.
[3] S. K. C. M. T. e. a. Makeig, "Evolving signal processing for brain-computer interfaces. Proceedings of the IEEE 100 (Special Centennial Issue)," Proceedings of the IEEE, vol. 100, no. IEEE, p. 1567–1584, 2012.
[4] F. B. L. C. A. e. a. Lotte, "A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. Journal of Neural Engineering," Journal of neural engineering, vol. 15, no. iOP Publishing, p. 031005, 2018.
[5] Y. B. H. A. I. e. a. Roy, "Deep learning-based electroencephalography analysis: a systematic review. Journal of Neural Engineering," Journal of neural engineering, vol. 16, no. IOP Publishing, p. 051001, 2019.
[6] L. a. F. T. Trambaiolli, "Hybrid brain-computer interfaces for wheelchair control: a review of existing solutions, their advantages and open challenges. In: Smart Wheelchairs and Brain-Computer Interfaces," Smart Wheelchairs and Brain-Computer Interfaces, no. Elsevier, p. 229–256, 2018.
[7] B. a. N. C. Allison, "Could anyone use a BCI?," Brain-computer interfaces: Applying our minds to human-computer interaction, no. Springer, p. 35–54, 2010.
[8] D. a. W. J. McFarland, "Brain–computer interface use is a skill that user and system acquire together," PLoS biology, vol. 16, no. Public Library of Science San Francisco, CA USA, p. e2006719, 2018.
[9] S. a. M. J. Perdikis, "Brain-machine interfaces: a tale of two learners," Brain-machine interfaces: a tale of two learners, vol. 6, no. IEEE, pp. 2333-942X, 2020.
[10] I. R. A. B. M. e. a. Volosyak, "Towards solving of the Illiteracy phenomenon for VEP-based brain-computer interfaces," Biomedical Physics & Engineering
Express, vol. 6, no. IOP Publishing, p. 035034, 2020.
[11] J. a. W. E. Wolpaw, "Brain-computer interfaces: something new under the sun," Brain-computer interfaces: principles and practice, vol. 14, no. Oxford University Press Oxford, 2012.
[12] H. (. Berger, "Über das elektroenkephalogramm des menschen," Archiv für psychiatrie und nervenkrankheiten, pp. 527-570, 1929.
[13] F. C. M. L. A. e. a. Lotte, "A review of classification algorithms for EEG-based brain–computer interfaces," Journal of neural engineering, vol. 4, no. IOP Publishing, p. R1, 2007.
[14] M. Brazier Pioneers in the discovery of evoked potentials Electroencephalogr Clin Neurophysiol, 59 (1984), pp. 2-8
[15] Kawala-Sterniuk, N. Browarska, A. Al-Bakri, M. Pelc, J. Zygarlicki, M. Sidikova, et al. Summary of over fifty years with brain-computer interfaces-A review Brain Sci, 11 (1) (2021), p. 43, 10.3390/brainsci11010043
[16] D. Silverman The rationale and history of the 10-20 system of the international federation Am J EEG Technol, 3 (1) (1964)
[17] A. B. M. S. P. e. a. Rezeika, "Brain–computer interface spellers: A review," Brain sciences, vol. 8, no. MDPI, p. 57, 2018.
[18] C. a. P. M. Marquez-Chin, "Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review," Biomedical engineering online, vol. 19, no. Springer, p. 1–25, 2020.
[19] H. G. R. a. F. T. Banville, "Mental task evaluation for hybrid NIRS-EEG brain-computer interfaces," Computational intelligence and neuroscience, no. Hindawi Limited, 2017.
[20] I. G. C. a. G. A. (. Volosyak, "Toward BCI Wizard-best BCI approach for each user," in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010.
[21] I. a. S. M. Volosyak, "Asynchronous Control of a Spherical Robot by Means of SSVEP-based Brain-Computer Interface," in 2019 E-Health and Bioengineering Conference, 2019.
[22] P. R. A. a. V. I. Stawicki, "Effects of Training on BCI Accuracy in SSMVEP-based BCI," in Advances in Computational Intelligence: 16th International Work-Conference on Artificial Neural Networks, IWANN 2021, Virtual Event, June 16–18, 2021, Proceedings, Part II 16, 2021.
[23] C. A. B. N. A. a. C. G. Mühl, "A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges," Brain-Computer Interfaces, vol. 1, no. Taylor & Francis, pp. 66-84, 2014.
[24] S. a. C. G. Ehrlich, "Human-agent co-adaptation using error-related potentials," Journal of neural engineering, vol. 15, no. IOP Publishing, p. 066014, 2018.
[25] F. R. I. R. R. e. a. Dehais, "A pBCI to predict attentional error before it happens in real flight conditions," in 2019 ieee international conference on systems, man and cybernetics (smc), 2019.
[26] R. S. A. a. M. J. Chavarriaga, "Errare machinale est: the use of error-related potentials in brain-machine interfaces," Frontiers in neuroscience, vol. 8, no. Frontiers, p. 86996, 2014.
[27] M. a. d. S. V. Mousavi, "Spatio-temporal analysis of error-related brain activity in active and passive brain–computer interfaces," Brain-computer interfaces, vol. 6, no. Taylor & Francis, p. 118–127, 2019.
[28] NIRS-measured prefrontal cortex activity in neuroergonomics: strengths and weaknesses. Frontiers in Human Neuroscience 7: 583. 20 2 Brain–Computer Interfaces: Recent Advances, Challenges, and Future, 2013.
[29] G. A. B. B. G. e. a. Pfurt-scheller, "The hybrid BCI," Frontiers in neuroscience, vol. 4, no. Frontiers, p. 1283, 2010.
[30] NBC News learn. (2020, May 5). Mysteries of the Brain: Brain-Computer Interface[Video]. YouTube. https://www.youtube.com/watch?v=p1XQ4uxqxZI
[31] T. G. M. P. S. a. C. T. Falk, "Taking NIRS-BCIs outside the lab: towards achieving robustness against environment noise," IEEE Transactions on Neural Systems and Rehabilitation Engineering, no. IEEE, pp. 136-146, 2010.
[32] I. T. A. P. M. e. a. Albuquerque, "Wauc: a multi-modal database for mental workload assessment under physical activity," Frontiers in Neuroscience, vol. 14, no. Frontiers, p. 549524, 2020.
[33] A. R. J. P. J. e. a. Lopes, "A new hybrid motion planner: Applied in a brain-actuated robotic wheelchair," IEEE Robotics & Automation Magazine, vol. 23, no. IEEE, p. 82–93, 2016.
[34] L. a. F. T. Trambaiolli, "Hybrid brain–computer interfaces for wheelchair control: a review of existing solutions, their advantages and open challenges," Smart Wheelchairs and Brain-Computer Interfaces, no. Elsevier, pp. 229-256, 2018.
[35] B. B. E. Z. Q. e. a. Rebsamen, "Hybrid P300 and Mu-Beta brain computer interface to operate a brain controlled wheelchair," in Proceedings of the 2nd International Convention on Rehabilitation Engineering & Assistive Technology, 2008.
[36] H. L. Y. L. J. e. a. Wang, "An asynchronous wheelchair control by hybrid EEG–EOG brain–computer interface," Cognitive neurodynamics, vol. 8, p. 399–409, 2014.
[37] C. S. R. P. F. e. a. .. Guger, "ssessing command-following and communication with vibro-tactile P300 brain-computer interface tools in patients with unresponsive wakefulness syndrome," Frontiers in neuroscience, vol. 12, no. Frontiers, p. 359448, 2018.
[38] Bin, G., Gao, X., Wang, Y., Li, Y., Hong, B., & Gao, S. (2011). A high-speed BCI based on code modulation VEP. Journal of neural engineering, 8(2), 025015.
[39] Wang, Z., Healy, G., Smeaton, A. F., & Ward, T. E. (2018). A review of feature extraction and classification algorithms for image RSVP based BCI. Signal processing and machine learning for brain-machine interfaces, 243-270.
[40] L. T. A. a. F. T. .. Trambaiolli, "Affective neurofeedback under naturalistic conditions: a mini-review of current achievements and open challenges," Frontiers in Neuroergonomics, vol. 2, no. Frontiers Media SA, 2021.
[41] Nirmala Devi, A., & Rathna, R. (2024). EEG data based human attention recognition using various machine learning techniques: a review. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 11(7), 2299096.
[42] Ackermann, S., & Rasch, B. (2014). Differential effects of non-REM and REM sleep on memory consolidation. Current neurology and neuroscience reports, 14, 1-10.
[43] Peng, Y., Wong, C. M., Wang, Z., Rosa, A. C., Wang, H. T., & Wan, F. (2021). Fatigue detection in SSVEP-BCIs based on wavelet entropy of EEG. Ieee Access, 9, 114905-114913.
[44] Rimbert, S., Riff, P., Gayraud, N., Schmartz, D., & Bougrain, L. (2019). Median nerve stimulation based BCI: a new approach to detect intraoperative awareness during general anesthesia. Frontiers in Neuroscience, 13, 622.
[45] R. e. a. Gupta, "Multimodal physiological quality-of-experience assessment of text-to-speech systems," IEEE Journal of Selected Topics in Signal Processing, no. IEEE, pp. 22-36, 2016.
[46] Wikipedia contributors. (2024). Functional near-infrared spectroscopy. In Wikipedia. Retrieved November17,2024,from https://en.wikipedia.org/wiki/Functional_near infrared_spectroscopy
[47] Y. L. C. W. H. e. a. Xing, "Driver lane change intention inference for intelligent vehicles: Framework, survey, and challenges," IEEE Transactions on Vehicular Technology, vol. 68, no. IEEE, pp. 4377-4390, 2019.
[48] T. B. F. R. P. e. a. Von Landesberger, "MobilityGraphs: Visual analysis of mass mobility dynamics via spatio-temporal graphs and clustering," IEEE transactions on visualization and computer graphics, vol. 22, no. IEEE, pp. 11-20, 2015.
[49] L. Li and F.-Y. Wang, Advanced motion control and sensing for intelligent vehicles, Springer Science & Business Media, 2007. [50] B. Shneiderman, "Human-centered artificial intelligence: Reliable, safe & trustworthy," International Journal of Human–Computer Interaction, vol. 36, no. Taylor & Francis, pp. 495-504, 2020.
[51] S. B. A. N. B. a. H. J.-H. (. Gedicke, "Zoomless maps: external labeling methods for the interactive exploration of dense point sets at a fixed map scale," IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. IEEE, pp. 1247-1256, 2020.
[52] C. T. M. a. K. J. Ackad, "Skeletons and silhouettes: Comparing user representations at a gesture-based large display," in Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 2016.
[53] Z. a. L. S. Kang, "An eye movement analysis algorithm for a multielement target tracking task: maximum transition-based agglomerative hierarchical clustering.," IEEE Transactions on Human-Machine Systems, vol. 45, no. IEEE Transactions on Human–Machine Systems 4, p. 13–24, 2015.
[54] C. K. Y. J. S. e. a. Lee, "A visual analytics system for exploring, monitoring, and forecasting road traffic congestion," IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. IEEE, p. 3133–3146, 2019.
[55] H. M. T. W. Z. a. D. Z. Bi, "A deep learning-based framework for intersectional traffic simulation and editing," IEEE Transactions on Visualization and Computer Graphics, no. IEEE, p. 2335–2348, 2019.
[56] K. S. D. W. J. e. a. Wongsuphasawat, "Visualizing dataflow graphs of deep learning models in tensorflow," IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. IEEE, p. 1–12, 2017.
[57] Z. T. R. S. O. e. a. Wang, "CNN explainer: learning convolutional neural networks with interactive visualization," IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. IEEE, 2020.
