بررسی عددی فینهای مختلف بر بهبود عملکرد حرارتی در میکرو کانالها
محورهای موضوعی : یافته های نوین کاربردی و محاسباتی در سیستم های مکانیکیعلی فلاوند جوزایی 1 , رحیم ظهیری 2
1 - گروه مهندسی مکانیک، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی، واحد اهواز، اهواز، ایران
2 - گروه مهندسی سیستمهای انرژی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
کلید واژه: فین, افت فشار, انتقال حرارت, ضریب عملکرد,
چکیده مقاله :
امروزه با گسترش تکنولوژی نیاز به طراحی مبدلهای کارا در ابعاد کوچک بهخصوص در بردهای الکترونیکی و میکروکانالها یک امر ضروری محسوب میشود. در این مقاله، یک مدل عددی سه بعدی از یک میکروکانال در نرم افزار انسیس فلوئنت بررسی شده است. برای حل مسئله از حلکننده فشار مبنا و برای ارتباط فشار و سرعت از سیمپل استفاده گردیده است. برای گسستهسازی معادلات پیوستگی، مومنتوم و انرژی از گسستهسازی مرتبه دوم استفاده شده است. تاثیر سه پارامتر عدد رینولدز، گام طولی، نوع شکل فین بر ضریب اصطکاک، عدد ناسلت و ضریب عملکرد مورد بررسی قرار گرفته است. نتایج حاکی از آن است که با افزایش عدد رینولدز و تبدیل جریان از حالت آرام به آشفته، انتقال حرارت و افت فشار افزایش یافته ولی چون میزان افزایش افت فشار از افزایش انتقال حرارت بیشتر است لذا ضریب عملکرد سیستم در جریان آشفته نسبت به جریان آرام کاهش پیدا میکند. در فین سهمی شکل عدد ناسلت 94/15درصد، ضریب اصطکاک 76/32 درصد و ضریب عملکرد 5/5 درصد افزایش یافت، در فین سوزنی عدد ناسلت 75/11 درصد، ضریب اصطکاک 17/24 درصد و ضریب عملکرد 97/3 درصد افزایش و در فین مخروطی شکل عدد ناسلت 05/14، ضریب اصطکاک21/26 درصد و ضریب عملکرد 54/5 درصد افزایش میباشد. با تغییر گام طولی فینها از 500 تا 300 میکرومتر، عدد ناسلت 14/9 درصد افزایش، ضریب اصطکاک 21 درصد و ضریب عملکرد 2 درصد افزایش مییابد.
Nowadays, with the advancement of technology, the need for designing efficient heat exchangers in small dimensions, especially in electronic circuit boards and microchannels, has become essential. A three-dimensional numerical model of a microchannel has been analyzed using ANSYS Fluent software. The pressure-based solver was employed to solve the problem, and the SIMPLE algorithm was used for pressure-velocity coupling. Second-order discretization was applied to the continuity, momentum, and energy equations. The effects of three parameters: Reynolds number, longitudinal fin pitch, and fin shape on the friction factor, Nusselt number, and performance evaluation criteria (PEC) were analyzed. The results indicate that as the Reynolds number increases and the flow transitions from laminar to turbulent, heat transfer and pressure drop increases. However, since the rate of increase in pressure drop is higher than the increase in heat transfer, the system PEC decreases in turbulent flow compared to laminar flow. For the parabolic fin, the Nusselt number increases by 15.94%, the friction factor by 32.76%, and the PEC by 5.5%. In the needle-shaped fin, the Nusselt number increases by 11.75%, the friction factor by 24.17%, and the PEC by 3.97%. For the conical fin, the Nusselt number increases by 14.05%, the friction factor by 26.21%, and the PEC by 5.54%. reducing the longitudinal fin pitch from 500 to 300 micrometers results in a 9.14% increase in the Nusselt number, a 21% increase in the friction factor, and a 2% improvement in PEC.
[1] Tuckerman, D.B., Pease, R.F., (1981), High performance heat sinking for VLSI, IEEE Electron, Dev. Letts. EDL-Vol 2, pp 126–129.
[2] Ryu, J. H., Choi, D. H. and Kim, S. J., (2002), Numerical optimization of the thermal performance of a microchannel heat sink, Int. J. Heat and Mass Transfer, Vol.45, pp.2823-2827.
[3] Wu, H. Y., and Cheng, P., (2003), An experimental study of convective heat transfer in silicon microchannels with different surface conditions, Int. J. Heat Mass Transfer 46, pp. 2547–2556.
[4] Peles, Y., Kosar, A., Mishra, C., Kuo, C., and Schneider, B., (2005), Forced convection heat transfer across a pin fin micro heat sink, Int. J. Heat Mass Transfer
[5] Li, J., and Peterson, G. P., (2007), 3-Dimensional numerical optimization of silicon-based high performance parallel microchannel heat sink with liquid flow, Int. J. Heat Mass Transfer 50, pp. 2895–2904.
[6] Hasan, M. I., Rageb, A. A., Yaghoubi, M., and Homayoni, H., (2009), Influence of channel geometry on the performance of a counter flow microchannel heat exchanger, Int. J. Thermal Sciences 48, pp. 1607–1618.
[7] Chen, J. J., Chen, C. H., and Shie, S. R., (2011), optimal designs of staggered Dean Vortex micromixers, Int. J. Mol. Sci., 12, 3500-3524.
[8] Tseng, L. Y., Yang, A. S., Lee, C. Y., and Hsieh, C. Y., (2011), CFD-Based optimization of a diamond-obstacles inserted micromixer with boundary protrusions, Engineering Application of Computational Fluid Mechanics Vol. 5, No. 2, pp. 210-222.
[9] Lee Y. J., Lee P. S., Chou S. K., (2013), Numerical Study of Fluid Flow and Heat Transfer in the Enhanced Microchannel With Oblique Fins, Journal of Heat Transfer, 135 (4), 041901- 0419010.
[10] Zhu X. W., Fu Y. H., Zhao J. Q., Zhu L., (2015), Three-dimensional numerical study of the laminar flow and heat transfer in a wavy-finnedheat sink filled with AL2O3/ethylene glycolwater nanofluid, NUMERICAL HEAT TRANSFER, 69 (2), 1–14.
[11] Bahiraei, M. and Heshmatian, S., (2017), Application of a novel biological nanofluid in a liquid block heat sink for cooling of an electronic processor: Thermal performance and irreversibility considerations, Energy Conversion Management, 149(1), pp. 155–167
[12] Al-Rashed, A.A., Shahsavar, A., Rasooli, O., Moghimi, M.A., Karimipour, A. and Tran, M.D., (2019), Numerical assessment into the hydrothermal and entropy generation characteristics of biological water-silver nanofluid in a wavy walled microchannel heat sink. International Communications in Heat and Mass Transfer, 104, pp. 118–126.
[13] Al-Rashed, A.A., Shahsavar, A., Rasooli, O., Moghimi, M.A., Karimipour, A. and Tran, M. D., (2019), Numerical assessment into the hydrothermal and entropy generation characteristics of biological water-silver nanofluid in a wavy walled microchannel heat sink. International Communications in Heat and Mass Transfer, 104, pp. 118–126.
[14] Bahoosh, R. and Falahat, A.R., (2021), Heat transfer of nanofluid through helical minichannels with secondary branches. Heat and Mass Transfer, 57(1), pp.
[15] Abdulqadur A. A., Hayder M. J., Dhamyaa Saad Khudhur, (2019), Performance optimiation of a cylindrical mini-channel heat sink using hybrid straight–wavy channel, International Journal of Thermal Sciences 146, pp. 106-111
[16] Gongnan X., Yanlong L., Fengli Zh., Bengt S., (2015), Analysis of micro-channel heat sinks with rectangular-shaped flow obstructions, NUMERICAL HEAT TRANSFER, PART A, VOL. 00, NO. 00, pp. 1–17
[17] محمدی مرتضی، مظلومی سید حسین، حسنی سید مسعود، خوشوقت علی آبادی مرتضی، 1397، بهبود عملکرد هیدرولیکی-حرارتی چاههای حرارتی میکروکانال با استفاده از پین-فینهای V شکل و نانوسیال Al2O3 /آب، مجله علمی پژوهشی مکانیک سازهها و شارهها، دوره 8 شماره 4، صفحات 211-228.
[18] همتی سنگ بیلی، محمد و احمدی ندوشن، افشین، 1400، شبیه سازی عددی عملکرد حرارتی میکروکانال سه لایه با درج میکرو پین-فین، چهارمین کنفرانس ملی مکانیک محاسباتی و تجربی
[19] فلاح عباسی مریم، شکوهمند حسین و خیاط مرتضی، 1401، مطالعهی تجربی اثر لایه الکتریکی دوگانه در انتقال گرما به میکرولوله گرمایی با مقطع مثلثی، نشریه علمی- تخصصی تبدیل انرژی، دوره 9 ، شماره 1، صفحات 55-72.
[20] ایرانمنش عقیل، 1402، بررسی عددی تاثیر فین L شکل بر بهبود فرآیند ذوب یک مبدل حرارتی دو لوله ای، اولین همایش ملی نوآوری در صنایع سبز.