کاربرد هوشمصنوعی در بهبود مدیریت پسماندهای ساختمانی: مطالعهای بر سیستمهای یکپارچه در شهر اصفهان
محورهای موضوعی : فنآوری های نوین در منابع طبیعی و محیط زیستمحمد رضا طباطبایی 1 , هادی شکیبا زاهد 2
1 -
2 - گروه مهندسی عمران، واحد سبزوار، دانشگاه حکیم سبزواری، یبزوار، ایران.
کلید واژه: دیجیتالسازی صنعت ساختوساز, هوشمصنوعی, تکنولوژیهای پیشرفته در مدیریت پسماند,
چکیده مقاله :
مقدمه: با توجه به افزایش تولید پسماند و دلنگرانیهاي حاصل از خسارات اکولوژیکی ناشی از آنها، سیاستگذاري مدیریت پسماند از اهمیت فوقالعادهاي برخوردار شده است. پسماند محصول جانبی فعالیتهاي انسانی و شامل انواع پسماندهاي خانگی، پزشکی، کشاورزي، صنعتی، تجاري، ویژه و خطرناک است. بازيابي نخالههاي ساختماني ميتواند نياز به انرژي، منابع طبيعي، منابع استخراج و زمين لازم بـراي دفن بهداشتي و كنترل شده را كاهش دهد. در این میان صنعت ساختوساز با چالشهای متعددی نظیر هزینههای بالا، زمان طولانی پروژهها، مسائل ایمنی و سلامت، و کمبود نیروی کار مواجه است. به علاوه، این صنعت در مقایسه با دیگر صنایع، بهطور محدود دیجیتالی شده که بر پیچیدگیها و مشکلات آن افزوده است. یکی از فناوریهای نوین که میتواند به حل این مسائل کمک کند، هوشمصنوعی است. هدف از پژوهش حاضر بررسی نقش و کاربرد هوشمصنوعی در سیستم مدیریت پسماند ساختمانی در شهر اصفهان است و این هدف با فرض اینکه تصمیمگیری مبتنی بر هوشمصنوعی در مدیریت پسماند ساختمانی در شهر اصفهان نقش دارد دنبال می شود.
مواد و روشها: این پژوهش به بررسی نقش هوشمصنوعی در سیستم مدیریت پسماندهای ساختمانی در شهر اصفهان پرداخته است. برای این منظور، دادهها از طریق اسناد و مطالعات میدانی در مناطق مختلف شهر اصفهان جمعآوری و با استفاده از نرمافزارهای آماری مانند SPSS و Smart PLS تجزیه و تحلیل شدند.
نتایج و بحث: نتایج نشان داد که استفاده از فناوریهایی همچون هوشمصنوعی و سنسورها میتواند به بهینهسازی فرآیندهای جمعآوری و پردازش پسماندهای ساختمانی کمک کند. بهویژه، استفاده از سنسورها برای نظارت بر میزان پر شدن سطلهای پسماند، بهینهسازی مسیر جمعآوری با استفاده از GPS، و بهرهگیری از سطلهای هوشمند برای تفکیک و فشردهسازی پسماند از جمله راهکارهای موثر بهشمار میآیند. همچنین، هدایت جریان پسماندها به سوی فناوریهای پیشرفته مانند بازیافت و پسماندسوزی، میتواند به کاهش هزینهها و آلایندهها کمک کند. طبق نتایج به دست آمده بيشترين ميزان همبستگي بين شاخص کاربرد هوشمصنوعی با مدیریت پسماند ساختمانی 82/0 و بعد از آن بين شـاخص هوشمصنوعی با شهر اصفهان 79/0 و سپس شاخص مدیریت پسماند ساختمانی با شاخص شهر اصفهان 67/0 است كه بيانگر تأثيرگذاري شاخصهاي کاربرد هوشمصنوعی بر مدیریت پسماند ساختمانی در شهر اصفهان است.
نتیجهگیری: این یافتهها نشان میدهند که هوشمصنوعی میتواند به بهبود کارایی و کاهش اثرات زیستمحیطی سیستمهای مدیریت پسماند ساختمانی در شهر اصفهان کمک کند. در این راستا، جداسازی مواد قابل بازیافت در مرحله تولید و در مبدا، به دلیل سهولت، صرفهجویی در زمان و هزینه و کاهش آلودگی و تخریب کمتر مواد قابل بازیافت بسیار مطلوب، کارآمدتر و کاربردیتر است.
Introduction: Due to the increase in waste generation and concerns about the ecological damage caused by them, waste management policy has become of great importance. Waste is a by-product of human activities and includes various types of household, medical, agricultural, industrial, commercial, special and hazardous waste. Recycling construction waste can reduce the need for energy, natural resources, extraction resources and land required for sanitary and controlled landfill. Meanwhile, the construction industry faces numerous challenges such as high costs, long project duration, safety and health issues, and labor shortage. In addition, this industry is limitedly digitized compared to other industries, which has added to its complexities and problems. One of the new technologies that can help solve these problems is artificial intelligence. The purpose of the present study is to investigate the role and application of artificial intelligence in the construction waste management system in the city of Isfahan, and this goal is pursued by assuming that artificial intelligence-based decision-making plays a role in construction waste management in the city of Isfahan.
Materials and Methods: This study investigated the role of artificial intelligence in the construction waste management system in Isfahan. For this purpose, data were collected through documents and field studies in different areas of Isfahan and analyzed using statistical software such as SPSS and Smart PLS.
Results and Discussion: The results showed that the use of technologies such as artificial intelligence and sensors can help optimize the collection and processing processes of construction waste. In particular, the use of sensors to monitor the filling level of waste bins, optimizing the collection route using GPS, and utilizing smart bins to separate and compress waste are effective solutions. Also, directing the waste flow towards advanced technologies such as recycling and waste incineration can help reduce costs and pollutants. According to the results obtained, the highest correlation between the artificial intelligence application index and construction waste management is (0.82), followed by the artificial intelligence index and the city of Isfahan (0.79), and then the construction waste management index and the city of Isfahan index (0.67), which indicates the impact of artificial intelligence application indices on construction waste management in Isfahan.
Conclusion: These findings indicate that artificial intelligence can help improve the efficiency and reduce the environmental impacts of construction waste management systems in Isfahan. In this regard, separating recyclable materials at the production stage and at source is highly desirable, more efficient, and more practical due to its ease, time and cost savings, and reduced pollution and less destruction of recyclable materials.
1. Ashokkumar, V., & Varghese, S. BIM based 3D model for construction waste quantification. International Research Journal of Engineering and Technology, 2018, 5(5), 3069-3076.
2. Akinade, O. O., & Oyedele, L. O. Integrating construction supply chains within a circular economy: An ANFIS-based waste analytics system (A-WAS). Journal of Cleaner Production, 2019, 229, 863-873.
3. Akanbi, L., Oyedele, L., Davila Delgado, J. M., Bilal, M., Akinade, O., Ajayi, A., & Mohammed-Yakub, N. Reusability analytics tool for end-of-life assessment of building materials in a circular economy. World Journal of Science, Technology and Sustainable Development, 2019, 16(1), 40-55.
4. Buchanan, B. G.. A (very) brief history of artificial intelligence. AI Magazine, 2015, 26(4), 53-53.
5. Brynjolfsson, E., Rock, D., & Syverson, C. Artificial intelligence and the modern productivity paradox. The Economics of Artificial Intelligence: An Agenda, 2019. 23, 23-57.
6. Baum, S. D., Barrett, A. M., & Yampolskiy, R. V. Modeling and interpreting expert disagreement about artificial superintelligence. Informatica, 2017, 41(4).
7. Bilal, M., Oyedele, L. O., Akinade, O. O., Ajayi, S. O., Alaka, H. A., Owolabi, H. A., & Bello, S. A. Big data architecture for construction waste analytics (CWA): A conceptual framework. Journal of Building Engineering, 2016.6, 144-156.
8. Benachio, G. L. F., et al. Circular economy in the construction industry: A systematic literature review. Journal of Cleaner Production. 2020
9. Dahlbo, H., Bachér, J., Lähtinen, K., Jouttijärvi, T., Suoheimo, P., Mattila, T., & Saramäki, K. Construction and demolition waste management – a holistic evaluation of environmental performance. Journal of Cleaner Production, 2015, 107, 333-341.
10. Darko, A., et al. Artificial intelligence in the AEC industry: Scientometric analysis and visualization of research activities. Automation in Construction. 2020
11. Davis, P., et al. The classification of construction waste material using a deep convolutional neural network. Automation in Construction. 2021
12. Ertel, W. Introduction to Artificial Intelligence. Springer. 2018
13. Gundupalli, S. P., et al. A review on automated sorting of source-separated municipal solid waste for recycling. Waste Management. 2017
14. Joensuu, T., et al. Circular economy practices in the built environment. Journal of Cleaner Production. 2020
15. Lu, W., et al. Computer vision for solid waste sorting: A critical review of academic research. Waste Management. 2022
16. Norouzi, M., et al. Circular economy in the building and construction sector: A scientific evolution analysis. Journal of Building Engineering. 2021
17. Nežerka, V., et al. Recycling of fines from waste concrete: Development of lightweight masonry blocks and assessment of their environmental benefits. Journal of Cleaner Production. 2023
18. Oluleye, B. I., et al. Circular economy research on building construction and demolition waste: A review of current trends and future research directions. Journal of Cleaner Production. 2022
19. Prošek, Z., et al. Recovery of residual anhydrous clinker in finely ground recycled concrete. Resources, Conservation and Recycling. 2020
20. Rich, E., Knight, K., & Nair, S. B. Artificial Intelligence. 2020
21. Russell, S. J., & Norvig, P. Artificial Intelligence: A Modern Approach. Pearson. 2016
22. Shan, N. L., Wee, S. T., Wai, T. L., & Chen, G. K. Construction waste management of Malaysia: Case study in Penang. Advanced Science Letters, 2018, 24(6), 4698-4703.
23. Su, Y. Multi-agent evolutionary game in the recycling utilization of construction waste. Science of the Total Environment. 2020
24. Turing, A. M. Computing machinery and intelligence (pp. 23-65). Springer Netherlands. 2019
25. Valentin, J., et al. Characterization of quarry dusts and industrial by-products as potential substitutes for traditional fillers and their impact on water susceptibility of asphalt concrete. Construction and Building Materials. 2021