Investigating the combustion energy of the reaction of helium ions using the acceleration of plasma blocks
محورهای موضوعی : Mechanical Engineeringvali markani 1 , nader azizi 2 , mahdi amniat talab 3 , rahim naderali 4
1 - Physics Department, Faculty of Sciences, Khoy Branch, Islamic Azad University, Khoy, Iran
2 - Physics Department, Faculty of Sciences, Khoy Branch, Islamic Azad University, Khoy, Iran
3 - Physics Department, Faculty of Sciences, Urmia University, Urmia, Iran
4 - Physics Department, Faculty of Sciences, Urmia University, Urmia, Iran
کلید واژه: لیزر, همجوشی, پرتوزایی, بلوک های پلاسما, احتراق, خود کانونی,
چکیده مقاله :
همجوشی هسته ای هلیوم-3 (He3) ممکن است با استفاده از پالس های لیزری پتاوات-پیکوثانیه برای انفجار جانبی همجوشی پروتون-بور (HB11) بدون نیاز به فشرده سازی، امکان پذیر باشد. همجوشی HB11 برای تولید همان میزان انرژی، تشعشع بسیار کمتری نسبت به نیروگاه های زغال سنگی ایجاد می کند. این روش به تکنیک احتراق جانبی چو-بوبین (Chu-Bobin) وابسته است که برای جلوگیری از پدیده ای به نام خود کانونی شدن نسبیتی (relativistic self-focusing)، پیش پالس ها را کاهش می دهد. پیش بینی های تئوری برای بلوک های پلاسمای بسیار جهت دار با دماهای متوسط و چگالی جریان یونی فوق العاده بالا (بالغ بر 10^11 آمپر بر سانتی متر مربع) با آزمایش ها تأیید شد. شتاب توسط نیروی غیرخطی ایجاد شد. این نتایج، درِ همجوشی چگالی جامد با احتراق جانبی چو-بوبین را باز می کند. در نهایت، مقایسه ای دقیق بین احتراق جانبی و فشرده سازی استاندارد لیزری کروی شکل برای تأکید بر تمایزهای اساسی در فرآیند احتراق نشان داده شده است.
This study intends to Investigate the combustion energy of the reaction of helium ions using the acceleration of plasma blocks.Helium-3 (He3) fusion may also be possible to ignite side-on utilizing petawatt-picosecond laser pulses for uncompressed proton-Boron (HB11) fusion. Interestingly, for the same energy production, HB11 fusion releases a lot less radiation than coal-fired power stations. This method depends on the Chu-Bobin side-on ignition technique, which reduces pre-pulses in order to prevent a phenomenon known as relativistic self-focusing. Theoretical predictions of highly directed plasma blocks with moderate temperatures and extraordinarily high ion current densities exceeding 1011 Amps/cm² were confirmed by experiments. The acceleration was caused by a nonlinear force. These results of this study open the door to solid-density fusion's Chu-Bobin side-on ignition. Lastly, a detailed comparison of side-on ignition and standard spherical laser compression is shown to emphasize the essential distinctions in the ignition process. Finally, the results and implications were discussed, and suggestions for future research were made.
[1] E. Moses, G.H. Miller, R.L. Kauffman, The ICF status and plans in the United States, J. de Physique IV 133 (2006)
[2] S. Nakai, Conference Report Prague May 2008, G. Mank and M. Kalal eds, IAEA Coordinated Research Program No. 13011
[3] H. Hora, P.S. Ray, Increased nuclear fusion yields of inertially confined DT plasma due to reheat, Zeitschrift f. Naturforschung 33A (1978) 890-894.
[4] R.C. Kirkpatrick, J.A. Wheeler, The physics of DT ignition in small fusion targets, Nuclear Fusion 21 (1981) 398-401.
[5] X.T. He, Y.S. Li, Physical processes of volume ignition and thermonuclear burn for high-gain inertial confinement fusion, AIP Conf. Proceedngs 318 (1994) 334-344.
[6] J.M. Martinez-Val, S. Eliezer, M. Piera, Volume ignition targets for heavy-ion inertial fusion, Laser and Particle Beams 12 (1994) 681-717.
[7] K. Lackner, S. Colgate, N.L. Johnson, R.C. Kirkpatrick, R. Menikoff, A.G. Petschek, Laser interaction and related plasma phenomena, AIP Conference proceedings 318 (1994) 356.
[8] H. Hora, H. Azechi, Y. Kitagawa, K. Mima, M. Murakami, S. Nakai, et al., Measured laser fusion gains reproduced by self-similar volume compression and volume ignition for NIF conditions, J. Plasma Physics 60 (1998) 743-760.
[9] E. Storm, Progress in laboratory high gain ICF, Press conference Lawrence Livermore National Laboratory, 16. Jan. 1986
[10] C. Yamanaka, S. Nakai, Thermonuclear neutron yield of 1012 achieved with Gekko XII green laser, Nature 319, 757 (1986)
[11] J.M. Soures, R.L. McCrory, et al. Direct‐drive laser‐fusion experiments with the OMEGA,60‐beam, >40 kJ, ultraviolet laser system, Phys. Plasmas 3, 2108 (1996)
[12] H. Hora, Plasmas at High Temperature and Densities, 2nd ed., Heidelberg: Springer 1991, Regensburg, Germany 2000.
[13] P. Amendt, H.F. Robey, H.S. Park, R.E. Tipton, R.E. Turner, J.L. Milovich, et al., Hohlraum-driven ignition-like double-shell implosions on the omega laser facility, Physical Review Letters 94 (2006) 1-4.
[14] P. Amendt, J.L. Milovich, L.J. Perkins, K.R. Robey, An indirect drive non-cryogenic double shell target driven by a 1 Nd laser, IFSA 2009 J.Physics – Conf. Ser. (2010) in print
[15] E. Storm, J.F. Latkowski, J.C. Farmer, R.P. Abbott, P.A. Amendt, et al. LIFE—A laser inertial fusion-based approach to high energy production IFSA 2009, J. Physics Conf. Ser. (2010) .
[16] E. I. Moses, Edward Teller Lecture 2009, J.Physics – Conf. Ser. (2010) in print.
[17] M. Tabak, J. Hammer, M.N. Glinski, W.L. Kruer, S.C. Wilks, J. Woodorth, et al., Ignition and high gain with ultrapowerful lasers, Physics of Plasmas 1 (1994) 1626-1634.
[18] J.H. Nuckolls, L. Wood, Future of Inertial Fusion Energy, Edward Teller Lectures London: Imperial College Press, 2005, pp. 13-14.
[19] J.H. Nuckolls, Grand challenges of inertial fusion energy, J.Physics – Conf. Ser. (2010) in print
[20] G. Mourou, T. Tajima, Inertial Fusion Science & Applications, Elsevier, Paris, 2002, p. 831.
[21] T.E. Cowan, M.D. Parry, M.H. Key, T.R. Dittmire, et al., High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments, Laser and Particle Beams,1999, 773-783.
[22] H. Hora, D.H.H. Hoffmann, Using petawatt laser puses of picosecond duration for detailed diagnostics of creation and decay processes of B-mesons in the LHC, Laser and Particle Beams 26 (2008) 503-505.
[23] T. Tajima, Europ., Prospect for extreme field science, J. Phys. D 55, 519 (2009)
[24] S.O. Dean, The rational for and expanding inertial fusion energy program, J. Fusion Energy 27 (2008) 149-153.
[25] G.H. Miley, H. Hora, Volume Ignition for Single Event Laser fusion by ns-Pulse or PW-ps Block Ignitor, Craig Wuest and Bill Hogan eds (ANS LaGrange IL, 2004) p. 418.
[26] M.S. Chu, Thermonuclear reaction waves at high densities, Physics of Fluids 15 (1972),413-422.
[27] J.L. Bobin, Laser Interaction and Related Plasma Phenomena, Vol. 4B, New York: Plenum Press, 1974, p. 465.
[28] R. Sauerbrey, Acceleration in femtosecond laser‐produced plasmas, Physics of Plasmas 1996 3, 4712 (1996)
[29] H. Hora, J. Badziak, F.B. Boody, R. Höpfl, K. Jungwirth, B. Kralikova, et al., Electromagnetic Waves in Media with Continuously Variable Refraction Index, Optics Commun., 2002 207, 333 (2002).
[30] H. Hora, J. Badziak, J.M.N. Read, Y.T. Li, T.J. Liang, Y. Cang, et al., Fast ignition by laser driven particle beams of very high intensity, Physics of Plasmas 14 (7) (2007) 072701-072701-7.
[31] J. Badziak, S. Glowacz, S. Jablonski, P. Parys, J. Wolowski, H. Hora, Laser-driven generation of high-current ion beams usingskin-layer ponderomotive acceleration, Laser and Paticle Beams 23 (2005) 401-409.
[32] H. Hora, Laser fusion with nonlinear force driven plasma blocks: Thresholds and dielectric effects, Laser and Particle Beams 27 (2009) 207-222.
[33] M. Ghoranneviss, B. Malekynia, H. Hora, G.H. Miley, X. He, Inhibition factor reduces fast ignition threshold for laser fusion using nonlinear force driven block acceleration, Laser and Particle Beams, 26, 105 (2008)
[34] H. Hora, B. Malekynia, M. Ghoranneviss, G.H. Miley et al. Twenty times lower ignition threshold for laser driven fusion usingcollective effects and the inhibition factor, Appl. Phys. Letters 93 (1) (2008) 011101.
[35] H. Hora, G.H. Miley, M. Ghoranneviss, B. Malekynia, N. Azizi, Laser-optical path to nuclear energy without radioactivity: Fusion of hydrogen–boron by nonlinear force driven plasma blocks, Optics Communic. 282 (2009) 4124-4126.
[36] H. Hora, G.H. Miley, N. Azizi, B. Malkynia, M. Ghoranneviss, X.T. He, Nonlinear force driven plasma blocks igniting solid density hydrogen boron: Laser fusion energy without radioactivity, Laser and Particle Beams 27 (2009) 491-496.
[37] H. Hora, G.H. Miley, M. Ghoranneviss, B. Malekynia, N. Azizi, X. Tu, Fusion energy without radioactivity: laser ignition of solid hydrogen–boron (11) fuel, He. Energy and Environmental Science 3 (2010) 479-486.
[38] T. Weaver, G. Zimmerman, L. Wood, Exotic CTR Fuel: Non-Thermal Effects and Laser Fusion Application, Report UCRL-74938, 1973.
[39] Ron McNally, Oak Ridge Nat. Lab. Report NSIGUDAT 14 Sept. 1987
[40] G.L. Kulcinski, Fife minutes contribution about harvesting helim-3 from the moon for energy production, CNN-TV World News, Nov. 19, 2007.
[41] H. Hora, Translation National Research Council Canada NRC-Technical Translation TT-1193, Institut Für Plasmaphysik, Garching Report 6/23, 1964.
[42] Hora and D. Pfirsch, Influence of Fast Ion Losses in Inertially Confined Nuclear Fusion Plasma, Laser Interaction and Related Plasma Phenomena (H. Schwarz and H. Hora, eds.),Plenum, New York, 1972, Vol. 2, 515.
[43] R.E. Kidder, Laser compression of matter: optical power and energy requirements, Nuclear Fusion 14, 797 (1974)
[44] H. Hora, Volume Ignition in Pellet Fusion to Overcome the Difficulties of Central Ignition,Z. Naturforschung 42A, (1987) 1239-1240.
[45] R. Betti, Edward Teller Lecture, IFSA 2009, J. Phys.- Conf. Ser. (2010) in print.