تأثیر عملیات حرارتی بر ریزساختار و خواص مکانیکی پوشش Cr3C2-NiCr ایجاد شده توسط فرایند HVOF
محورهای موضوعی : خوردگی و حفاظت موادپژمان زمانی مقدم 1 , رضا قاسمی 2 , بهناز سعیدی 3 , حمید دهاقین 4 , فرهاد شهریاری 5 , محمود معماری 6
1 - کارشناس واحد توسعه پوشش، شرکت توربوکمپرسورتک خاورمیانه، تهران، ایران
2 - کارشناس واحد توسعه پوشش، شرکت توربوکمپرسورتک خاورمیانه، تهران، ایران
3 - کارشناس واحد توسعه پوشش، شرکت توربوکمپرسورتک خاورمیانه، تهران، ایران
4 - مدیر واحد توسعه پوشش، شرکت توربوکمپرسورتک خاورمیانه، تهران، ایران.
5 - مشاور واحد توسعه پوشش، دانشگاه صنعتی شیراز، شیراز، ایران.
6 - مدیر گروه توسعه تکنولوژی ساخت، شرکت توربوکمپرسورتک خاورمیانه، تهران، ایران
کلید واژه: خواص مکانیکی, ریزساختار, عملیات حرارتی, Cr3C2-NiCr, ترکیب فازی,
چکیده مقاله :
ایجاد ترکیب سرمتی Cr3C2-NiCr توسط فرایند پاشش سوخت-اکسیژن سرعت بالا (HVOF) منجر به انحلال بخشی از فازهای Cr3C2 در آلیاژ NiCr و افت سختی و مدول الاستیک پوشش می شود. در این تحقیق، پودر Cr3C2-25wt% (Ni-20Cr) توسط فرایند HVOF روی زیرلایه هایی از جنس سوپر آلیاژ Hastelloy X اعمال شدند. تأثیر عملیات حرارتی بر بازیابی فاز Cr3C2و بهبود سختی و مدول الاستیک پوشش مورد بررسی قرار گرفت. بدین منظور، بررسی ریزساختاری توسط میکروسکوپ الکترونی روبشی گسیل میدانی و بررسی ترکیب فازی توسط آنالیز پراش اشعه ایکس (XRD) روی پوشش قبل و بعد از عملیات حرارتی انجام شد. آنالیز تصاویر میکروسکوپی الکترونی برگشتی نشان داد که طی عملیات حرارتی تا 11 درصد فازهای کاربیدی حل شده در آلیاژ NiCr بازیابی می شوند. در الگوهای XRD پوشش عملیات حرارتی شده، نواحی آمورف محو شدند و پیکهای NiCr باریک و با شدت بیشتری در الگوی فاز زمینه مشاهده شدند. همچنین سختی و مدول الاستیک پوشش پس از عملیات حرارتی به ترتیب به میزان HV0.3 156 و GPa98 افزایش یافت.
Deposition of the Cr3C2-NiCr cermet by the HVOF process results in the dissolution of Cr3C2 in the NiCr metal phase and decreasing the hardness and the elastic modulus of the resulting coating. In this study, Cr3C2-25wt% (Ni-20Cr) powder was applied to Hastelloy X super alloy substrates by high velocity oxy-fuel (HVOF) process. Influence of heat treatment on Cr3C2 phase recovery and improvement of hardness and elastic modulus of coatings was investigated. For this purpose, microstructural examination performed by field emission scanning electron microscopy and phase composition analysis by X-ray diffraction (XRD) analysis on the coating before and after heat treatment. Analysis of back scattered electron microscopy images showed that up to 11% of the dissolved carbide phases in the NiCr alloy recovered during heat treatment. In the XRD patterns of the heat-treated coatings, the amorphous regions disappeared and the NiCr peaks pronounced more in the background phase pattern. Also, the hardness and elastic modulus of coating after heat treatment increased by 156 HV0.3 and 98 GPa, respectively.
[1] T. Sahraoui & et al. "Alternative to chromium: characteristics and wear behavior of HVOF coatings for gas turbine shafts repair (heavy-duty)." Journal of Materials Processing Technology, vol. 152, no. 1, pp, 43-55, 2004.
[2] J. M. Guilemany, S. Dosta & J. R. Miguel. "The enhancement of the properties of WC-Co HVOF coatings through the use of nanostructured and microstructured feedstock powders." Surface and Coatings Technology, vol. 201, no. 3-4, pp, 1180-1190, 2006.
[3] Y. Liu, W. Liu, Y Ma & et al. "A comparative study on wear and corrosion behavior of HVOF-and HVAF-sprayed WC–10Co–4Cr coatings." Surface Engineering, vol. 33, no. 1, pp, 63-71, 2017.
[4] S. Matthews, B. James & M. Hyland. "The role of microstructure in the mechanism of high velocity erosion of Cr3C2–NiCr thermal spray coatings: Part 1—as-sprayed coatings." Surface and Coatings Technology, vol. 203, no. 8, pp, 1086-1093, 2009.
[5] S. Matthews, M. Hyland & B. James. "Microhardness variation in relation to carbide development in heat treated Cr3C2–NiCr thermal spray coatings." Acta Materialia, vol. 51, no. 14, pp, 4267-4277, 2003.
[6] ا. امیرکاوئی و ع. سعیدی، "تولید پودر کاربید کروم (Cr3C2) به روشهای سنتز احتراقی و مکانوشیمیایی"، فرایندهای نوین در مهندسی مواد، شماره اول، 1389.
[7] W. Żórawski & S. Kozerski, "Scuffing resistance of plasma and HVOF sprayed WC12Co and Cr3C2-25 (Ni20Cr) coatings." Surface and Coatings Technology, vol. 202, no. 18, pp, 4453-4457, 2008.
[8] V, Matikainen & et al. "Sliding wear behaviour of HVOF and HVAF sprayed Cr3C2-based coatings." Wear, vol. 388, pp, 57-71, 2017.
[9] A. S. M. Ang, H. Howse, S. A. Wade & et al. "Manufacturing of nickel based cermet coatings by the HVOF process." Surface Engineering, vol. 32, no. 10, pp, 713-724, 2016.
[10] S. Matthews, M. Hyland & B. James. "Long-term carbide development in high-velocity oxygen fuel/high-velocity air fuel Cr3C2-NiCr coatings heat treated at 900 C." Journal of Thermal Spray Technology, vol. 13, no. 4, pp, 526-536, 2004.
[11] J. M. Guilemany & et al. "Role of heat treatments in the improvement of the sliding wear properties of Cr3C2–NiCr coatings." Surface and Coatings Technology, vol. 157, no. 2-3, pp, 207-213, 2002.
[12] O. Fumitaka & et al. "Properties of Cr3C2-NiCr cermet coating sprayed by high power plasma and high velocity oxy-fuel processes." Journal of thermal spray technology, vol. 9, no. 4, pp, 499-504, 2000.
[13] م. حاجیلو و ض. والفی، بررسی تأثیر دما و زمان فرآیند گداخت بر ریزساختار و عملکرد سایشی پوششهای NiCrBSi پاشش پلاسمایی، فرایندهای نوین در مهندسی مواد، سال 13، شماره 2، 1398.
[14] J. P. Singh, "Use of Indentation Technique to Measure Elastic Modulus of Plasma-Sprayed Zirconia Thermal Barrier Coatings." Ceramic Engineering & Science Proceedings. 1997.
[15] پ. زمانی مقدم، ر. قاسمی، ب. سعیدی و ح. دهاقین، بررسی ریزساختار، سختی و استحکام پیوند پوشش سرمتی Cr3C2-NiCr ایجادشده روی اجزای محفظه احتراق توربین گازی توسط فرایند HVOF، نوزدهمین کنگره ملی مهندسی سطح، بهمنماه 1397.
[16] D. Ghosh & S. K. Mitra, "Plasma sprayed Cr3C2–Ni–Cr coating for oxidation protection of 2· 25Cr–1Mo steel." Surface Engineering, vol. 31, no. 5, pp, 342-348, 2015.
[17] H. Singh, T. S. Sidhu, J. Karthikeyan & et al. "Development and characterization of Cr3C2–NiCr coated superalloy by novel cold spray process." Material Manufacturing Processes, vol. 31, no. 11 pp, 1476-1482, 2016.
[18] S. Matthews, "Doctoral Thesis – Erosion–corrosion of Cr3C2–NiCr high velocity thermal spray coatings", Department of Chemical and Materials Engineering, Vol. Doctoral Thesis, The University of Auckland, Auckland, 2004.
[19] P. Dominique, J. G. Legoux & R. S. Lima, "Engineering HVOF-sprayed Cr3C2-NiCr coatings: the effect of particle morphology and spraying parameters on the microstructure, properties, and high temperature wear performance." Journal of thermal spray technology, vol. 22, no. 2-3, pp, 280-289, 2013.
[20] P. Sahoo & R. Raghuraman. "Chromium-carbide-reinforced composite coatings for high-temperature hard-coat applications." Thermal Spray Coat: Res., Design Appl., Proc. Natl. Spray Conf. 1993.
[21] J. He & E. J. Lavernia. "Precipitation phenomenon in nanostructured Cr3C2–NiCr coatings." Materials Science and Engineering: A, vol. 301, no. 1, pp, 69-79, 2001.
[22] J. M. Guilemany & et al. "Role of heat treatments in the improvement of the sliding wear properties of Cr3C2–NiCr coatings." Surface and Coatings Technology, vol. 157, no. 2-3, 207-213, 2002.
[23] CRC Materials Science and Engineering Handbook. p.472.
_||_[1] T. Sahraoui & et al. "Alternative to chromium: characteristics and wear behavior of HVOF coatings for gas turbine shafts repair (heavy-duty)." Journal of Materials Processing Technology, vol. 152, no. 1, pp, 43-55, 2004.
[2] J. M. Guilemany, S. Dosta & J. R. Miguel. "The enhancement of the properties of WC-Co HVOF coatings through the use of nanostructured and microstructured feedstock powders." Surface and Coatings Technology, vol. 201, no. 3-4, pp, 1180-1190, 2006.
[3] Y. Liu, W. Liu, Y Ma & et al. "A comparative study on wear and corrosion behavior of HVOF-and HVAF-sprayed WC–10Co–4Cr coatings." Surface Engineering, vol. 33, no. 1, pp, 63-71, 2017.
[4] S. Matthews, B. James & M. Hyland. "The role of microstructure in the mechanism of high velocity erosion of Cr3C2–NiCr thermal spray coatings: Part 1—as-sprayed coatings." Surface and Coatings Technology, vol. 203, no. 8, pp, 1086-1093, 2009.
[5] S. Matthews, M. Hyland & B. James. "Microhardness variation in relation to carbide development in heat treated Cr3C2–NiCr thermal spray coatings." Acta Materialia, vol. 51, no. 14, pp, 4267-4277, 2003.
[6] ا. امیرکاوئی و ع. سعیدی، "تولید پودر کاربید کروم (Cr3C2) به روشهای سنتز احتراقی و مکانوشیمیایی"، فرایندهای نوین در مهندسی مواد، شماره اول، 1389.
[7] W. Żórawski & S. Kozerski, "Scuffing resistance of plasma and HVOF sprayed WC12Co and Cr3C2-25 (Ni20Cr) coatings." Surface and Coatings Technology, vol. 202, no. 18, pp, 4453-4457, 2008.
[8] V, Matikainen & et al. "Sliding wear behaviour of HVOF and HVAF sprayed Cr3C2-based coatings." Wear, vol. 388, pp, 57-71, 2017.
[9] A. S. M. Ang, H. Howse, S. A. Wade & et al. "Manufacturing of nickel based cermet coatings by the HVOF process." Surface Engineering, vol. 32, no. 10, pp, 713-724, 2016.
[10] S. Matthews, M. Hyland & B. James. "Long-term carbide development in high-velocity oxygen fuel/high-velocity air fuel Cr3C2-NiCr coatings heat treated at 900 C." Journal of Thermal Spray Technology, vol. 13, no. 4, pp, 526-536, 2004.
[11] J. M. Guilemany & et al. "Role of heat treatments in the improvement of the sliding wear properties of Cr3C2–NiCr coatings." Surface and Coatings Technology, vol. 157, no. 2-3, pp, 207-213, 2002.
[12] O. Fumitaka & et al. "Properties of Cr3C2-NiCr cermet coating sprayed by high power plasma and high velocity oxy-fuel processes." Journal of thermal spray technology, vol. 9, no. 4, pp, 499-504, 2000.
[13] م. حاجیلو و ض. والفی، بررسی تأثیر دما و زمان فرآیند گداخت بر ریزساختار و عملکرد سایشی پوششهای NiCrBSi پاشش پلاسمایی، فرایندهای نوین در مهندسی مواد، سال 13، شماره 2، 1398.
[14] J. P. Singh, "Use of Indentation Technique to Measure Elastic Modulus of Plasma-Sprayed Zirconia Thermal Barrier Coatings." Ceramic Engineering & Science Proceedings. 1997.
[15] پ. زمانی مقدم، ر. قاسمی، ب. سعیدی و ح. دهاقین، بررسی ریزساختار، سختی و استحکام پیوند پوشش سرمتی Cr3C2-NiCr ایجادشده روی اجزای محفظه احتراق توربین گازی توسط فرایند HVOF، نوزدهمین کنگره ملی مهندسی سطح، بهمنماه 1397.
[16] D. Ghosh & S. K. Mitra, "Plasma sprayed Cr3C2–Ni–Cr coating for oxidation protection of 2· 25Cr–1Mo steel." Surface Engineering, vol. 31, no. 5, pp, 342-348, 2015.
[17] H. Singh, T. S. Sidhu, J. Karthikeyan & et al. "Development and characterization of Cr3C2–NiCr coated superalloy by novel cold spray process." Material Manufacturing Processes, vol. 31, no. 11 pp, 1476-1482, 2016.
[18] S. Matthews, "Doctoral Thesis – Erosion–corrosion of Cr3C2–NiCr high velocity thermal spray coatings", Department of Chemical and Materials Engineering, Vol. Doctoral Thesis, The University of Auckland, Auckland, 2004.
[19] P. Dominique, J. G. Legoux & R. S. Lima, "Engineering HVOF-sprayed Cr3C2-NiCr coatings: the effect of particle morphology and spraying parameters on the microstructure, properties, and high temperature wear performance." Journal of thermal spray technology, vol. 22, no. 2-3, pp, 280-289, 2013.
[20] P. Sahoo & R. Raghuraman. "Chromium-carbide-reinforced composite coatings for high-temperature hard-coat applications." Thermal Spray Coat: Res., Design Appl., Proc. Natl. Spray Conf. 1993.
[21] J. He & E. J. Lavernia. "Precipitation phenomenon in nanostructured Cr3C2–NiCr coatings." Materials Science and Engineering: A, vol. 301, no. 1, pp, 69-79, 2001.
[22] J. M. Guilemany & et al. "Role of heat treatments in the improvement of the sliding wear properties of Cr3C2–NiCr coatings." Surface and Coatings Technology, vol. 157, no. 2-3, 207-213, 2002.
[23] CRC Materials Science and Engineering Handbook. p.472.