Catalytic oxidative desulfurization of dibenzothiophene by heterogeneous M2+/Al-layered double hydroxide (M2+ = Zn, Mg, Ni) modified zinc oxide
محورهای موضوعی : Iranian Journal of Catalysis
Nur Ahmad
1
,
Nova Yuliasari
2
,
Fitri Arsyad
3
,
Idha Royani
4
,
Risfidian Mohadi
5
,
Aldes Lesbani
6
1 - Graduate School of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia
2 - Graduate School of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia
3 - Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia
4 - Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia
5 - Graduate School of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia|Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia
6 - Graduate School of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia|Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia
کلید واژه: Heterogeneous catalyst, dibenzothiophene, Reusability, Layered Double Hydroxide, Oxidative desulfurization,
چکیده مقاله :
In this study, the preparation of layered double hydroxide-metal oxide (ZnAl-ZnO, MgAl-ZnO, and NiAl-ZnO) was successful. The characterization of the catalyst used XRD, FTIR, and SEM analysis. The catalyst shows high oxidative desulfurization of dibenzothiophene. The percentage conversion of dibenzothiophene on ZnAl-ZnO, MgAl-ZnO, and NiAl-ZnO was 99.38%, 99.34%, and 99.90%, respectively. The acidities of ZnAl-ZnO, MgAl-ZnO, and NiAl-ZnO were 0.798, 2.469, and 0.184 mmol/g, respectively. The catalysts are heterogeneous systems, and the advantage is that they can be used for reusability. After 3 cycles of catalytic reactions at 323 K for 30 min, reusability proves that the percentage conversion of dibenzothiophene on ZnAl-ZnO, MgAl-ZnO, and NiAl-ZnO had a stable structure.
