بهینه سازی کنترل توربین های بادی مبتنی بر ژنراتور های القایی دو سو تغذیه با استفاده از آنالیز حساسیت و بر اساس روش بهینه سازی تجمع ذرات
محورهای موضوعی :
مهندسی برق کنترل
میثم جابرالانصار
1
,
محمد مهدی رضایی
2
,
حامد خدادادی
3
,
سیدمحمد مدنی
4
1 - دانشکده مهندسی برق، واحد خمینی شهر، دانشگاه آزاد اسلامی، خمینی شهر ، اصفهان، ایران
2 - دانشکده مهندسی برق، واحد خمینی شهر، دانشگاه آزاد اسلامی، خمینی شهر ، اصفهان، ایران
3 - دانشکده مهندسی برق، واحد خمینی شهر، دانشگاه آزاد اسلامی، خمینی شهر ، اصفهان، ایران
4 - دانشکده مهندسی برق، دانشگاه اصفهان، اصفهان، ایران
تاریخ دریافت : 1401/02/10
تاریخ پذیرش : 1401/06/09
تاریخ انتشار : 1401/09/01
کلید واژه:
ژنراتورهای القایی دوسو تغذیه (DFIG),
توربینهای بادی,
بهینه سازی,
بهینه سازی تجمع ذرات (PSO),
آنالیز حساسیت,
چکیده مقاله :
یکی از مسائل کلیدی در بهره برداری بهینه از توربینهای بادی مبتنی بر ژنراتورهای القایی دوسو تغذیه (DFIG)، بهینه سازی پارامترهای کنترلی نسبتا زیادی است که در این سیستم ها وجود دارند. اما، مشکل اصلی تعداد بالای پارامترهای کنترلی و غیرخطی بودن مدل این سیستم ها است که حل مساله بهینه سازی را بسیار زمانبر و در برخی موارد واگرا می کند. در این مقاله، بمنظور بهینه سازی پارامترهای کنترلی یک روش مبتنی بر بهینه سازی تجمع ذرات (PSO) پیشنهاد شده است. در این روش، پس از خطی سازی مدل سیستم، مقادیر ویژه سیستم بصورت تابعی از پارامترهای کنترلی مورد بررسی قرار می گیرند. با بررسی حساسیت مقادیر ویژه به پارامترهای کنترلی، پارامترهای حساسیت برانگیزتر شناسایی می شوند و بر اساس روش PSO مورد بهینه سازی قرار می گیرند. صحت و کارایی روش پیشنهادی از طریق شبیه سازی در محیط نرم افزار MATLAB مورد بررسی قرار گرفته است.
چکیده انگلیسی:
One of the key issues in the optimal operation of DFIG-based wind turbines is the optimization of relatively large control parameters that exist in these systems. However, the main problem is the high number of control parameters and the nonlinearity of the model of these systems, which makes solving the optimization problem very time-consuming and divergent in some cases. In this article, in order to optimize the control parameters, a method based on particle swarm optimization (PSO) is proposed. In this method, after linearization of the system model, the eigenvalues of the system are extracted as a function of the control parameters. By examining the sensitivity of eigenvalues to control parameters, more sensitive parameters are identified and optimized based on the PSO method. The performance of the proposed method has been investigated through simulation in the MATLAB software environment.
منابع و مأخذ:
A. Gatto. “The energy futures we want: A research and policy agenda for energy transitions.” Energy Research & Social Science, vol. 89, pp. 102639, 2022, doi: 10.1016/j.erss.2022.102639
M. Nazir, A. Mahdi, M. Bilal, H. Sohail, N. Ali, and H. Iqbal. “Environmental impact and pollution-related challenges of renewable wind energy paradigm–a review.” Science of the Total Environment, vol. 683, pp. 436-444, 2019, doi: 10.1016/j.scitotenv.2019.05.274
M. M. Rezaei. “A nonlinear maximum power point tracking technique for DFIG-based wind energy conversion systems.” Engineering science and technology, an international journal, vol. 21, no. 5, pp. 901-908, 2018, doi: 10.1016/j.jestch.2018.07.005
R. Liu, J. Yao, X. Wang, P. Sun, J. Pei, and J. Hu. “Dynamic stability analysis and improved LVRT schemes of DFIG-based wind turbines during a symmetrical fault in a weak grid.” IEEE transactions on power electronics, vol. 35, no. 1, pp. 303-318, 2019, doi: 10.1109/TPEL.2019.2911346
A. Sotoudeh, J. Soltani, and M. M. Rezaei. “A Robust Control for SCIG-Based Wind Energy Conversion Systems Based on Nonlinear Control Methods.” Journal of Control, Automation and Electrical Systems, vol. 32, no. 3, pp. 735-746, 2021, doi: 10.1007/s40313-021-00705-0
M. Koivisto, K. Das, F. Guo, P. Sørensen, E. Nuño, N. Cutululis, and P. Maule. “Using time series simulation tools for assessing the effects of variable renewable energy generation on power and energy systems.” Wiley Interdisciplinary Reviews: Energy and Environment, vol. 8, no. 3, pp. e329, 2019, doi: 10.1002/wene.329
A. Tummala, H. Alluri, and P. V. Ramanarao. “Optimal control of DFIG wind energy system in multi-machine power system using advanced differential evolution.” IETE Journal of Research, vol. 66, no. 1, pp. 91-102, 2020, doi: 10.1080/03772063.2018.1466732
T. Chien, Y. Huang, and Y. Hsu. “Neural Network-Based Supplementary Frequency Controller for a DFIG Wind Farm.” Energies, vol. 13, no. 20, pp. 5320, 2020, doi: 10.3390/en13205320
Y. Bostani, S. Jalilzadeh, S. Mobayen, T. Rojsiraphisal, and A. Bartoszewicz. “Damping of Subsynchronous Resonance in Utility DFIG-Based Wind Farms Using Wide-Area Fuzzy Control Approach.” Energies, vol. 15, no. 5, pp. 1787, 2022, doi: 10.3390/en15051787
V. Kumar, A. Pandey, and S. Sinha. “Stability improvement of DFIG-based wind farm integrated power system using ANFIS controlled STATCOM.” Energies, vol. 13, no. 18, pp. 4707, 2020, doi: 10.3390/en13184707
H. Benbouhenni, and N. Bizon. “Advanced direct vector control method for optimizing the operation of a double-powered induction generator-based dual-rotor wind turbine system.” Mathematics, vol. 9, no. 19, pp. 2403, 2021, doi: 10.3390/math9192403
H. Benbouhenni. “Comparative Study between Different Vector Control Methods Applied to DFIG Wind Turbines.” Majlesi Journal of Energy Management, vol. 10, no. 2, pp. 31-39, 2021.
B. Kumar, K. Sandhu, and R. Sharma. “Comparative analysis of control schemes for dfig-based wind energy system.” Journal of the Institution of Engineer, vol. 2, pp. 1-20, 2021, doi: 10.1007/s40031-021-00660-z
H. Fakhraee, M. Babaei, M. Alizadeh, and M. Tabrizian. “Direct slip angle control for rotor side converter of standalone DFIG‐DC system.” IET Renewable Power Generation, vol. 16, no. 11, pp. 12538, 2022, doi: 10.1049/rpg2.12538
H. Ali, N. Kamal, and G. Elbasuony. “Two-Level Grid-Side Converter-Based STATCOM and Shunt Active Power Filter of Variable-Speed DFIG Wind Turbine-Based WECS Using SVM for Terminal Voltage.” International Journal of Service Science, Management, Engineering, and Technology, vol. 12, no. 2, pp. 169-202, 2021, doi: 10.4018/IJSSMET.2021030110
A. Jafari, and Gh. Shahgholian. “Analysis and simulation of a sliding mode controller for mechanical part of a doubly‐fed induction generator‐based wind turbine.” IET Generation, Transmission & Distribution, vol. 11, no. 10, pp. 2677-2688, 2017, doi: 10.1049/iet-gtd.2016.1969.
M. Zamanifar, B. Fani, M. E. H. Golshan, and H. R. Karshenas. “Dynamic modeling and optimal control of DFIG wind energy systems using DFT and NSGA-II.” Electric Power Systems Research, vol. 108, pp. 50-58, 2014, doi: 10.1016/j.epsr.2013.10.021.
T. Yufei, P. Ju, H. He, Chuan Qin, and Feng Wu. “Optimized control of DFIG-based wind generation using sensitivity analysis and particle swarm optimization.” IEEE Transactions on Smart Grid, vol. 4, no. 1, pp. 509-520, 2013, doi: 1109/TSG.2013.2237795.
E. Chetouani, Y. Errami, A. Obbadi, and S. Sahnoun. “Optimal tuning of PI controllers using adaptive particle swarm optimization for doubly-fed induction generator connected to the grid during a voltage dip.” Bulletin of Electrical Engineering and Informatics, vol. 10, no. 5, pp. 2367-2376, 2021, doi: 10.11591/eei.v10i5.2843
H. Bakir, A. Merabet, R. Dhar, and A. Kulaksiz. "Bacteria foraging optimisation algorithm based optimal control for doubly‐fed induction generator wind energy system." IET Renewable Power Generation, vol. 14, no. 11, pp. 1850-1859, 2020, doi: 10.1049/iet-rpg.2020.0172
O. Bharti, K. Sarita, A. Vardhan, A. Vardhan, and R. Saket. "Controller design for DFIG‐based WT using gravitational search algorithm for wind power generation." IET Renewable Power Generation, vol. 15, no. 9, pp. 1956-1967, 2021, doi: 10.1049/rpg2.12118
_||_