مروری بر چالش های فنّی اتصال سیستم های تبدیل انرژی باد به شبکه
محورهای موضوعی :
مقاله پژوهشی
مجید طاوسی
1
,
احسان حیدریان فروشانی
2
*
,
محمد حسن امیریون
3
,
محسن پارسا مقدم
4
1 - دانشکده مهارت و کارآفرینی واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران
2 - دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی قم، قم، ایران
3 - گروه مهندسی برق، مرکز آموزش عالی شهرضا، دانشگاه اصفهان، ایران
4 - دانشکده مهندسی برق و کامپیوتر، دانشگاه تربیت مدرس، تهران، ایران
تاریخ دریافت : 1401/01/05
تاریخ پذیرش : 1401/06/06
تاریخ انتشار : 1401/09/01
کلید واژه:
پشتیبانی ولتاژ,
کدهای شبکه,
پاسخ فرکانس,
سیستم های ذخیره انرژی (ESS),
انرژی باد,
استراتژی کنترل,
پایداری,
قابلیت اطمینان,
یکپارچه سازی شبکه,
تاب آوری,
کیفیت توان,
چالش های حفاظت,
قابلیت متصل ماندن به شبکه,
چکیده مقاله :
تولید برق بادی سهم قابل توجهی در تولید جهانی برق دارد. نفوذ بالای نیروی باد چالش های عملیاتی و کنترلی بسیاری را به همراه دارد که بر قابلیت اطمینان و پایداری سیستم های قدرت تأثیر می گذارد. در این مقاله، چالشهای فنّی گزارششده ناشی از یکپارچهسازی سیستم تبدیل انرژی باد در شبکه و روشهای راهحلهای پیشنهادی ارائه شدهاند. معماری و اجزاء سیستم تولید باد در ابتدای این مقاله برای اهداف تحلیل و مطالعات پایداری مورد بررسی قرار میگیرند، سپس به چالشهای فنی مختلف پرداخته میشود؛ هر چالش به صورت جداگانه، با تمرکز بر ادغام عمده انرژی باد در سیستمهای قدرت مورد بحث قرار می گیرد. برخی راهحلها، از جمله کد شبکه، فناوریهای ذخیرهسازی انرژی، استراتژی های مناسب کنترل و سایر روشهای مورد استفاده برای کاهش اثرات یکپارچهسازی، نیز گنجانده شدهاند. این بررسی، مقدمهای از موضوعات ضروری برای یکپارچهسازی شبکه انرژی بادی و فناوریهای موجود در جهت غلبه بر مشکلات مربوطه را فراهم میکند.
چکیده انگلیسی:
Wind power generation is making an increasingly significant contribution to global electricity production. The high penetration of wind power poses many operational and control challenges that affects the reliability and stability of power systems. In this Paper, the reported technical challenges caused by the grid integration of wind energy conversion system (WECS) and the proposed solutions methodologies represents. The wind-generating system components and architecture are investigated at the beginning of this article for analysis and stability studies purposes, then are addressed various technical challenges; each challenge is discussed individually, focusing on the bulk integration of wind energy into the power systems. Some solutions, including grids code, energy storage technologies, appropriate control strategies, and other methodologies employed to mitigate the effects of the integration, are also included. This review is ready-reckoner of essential topics for further research of wind energy and available technologies in this field. This review provides ready-reckoner of essential topics for grid integration of wind energy and available technologies in direction of overcome the related difficulties.
منابع و مأخذ:
“Global Wind Energy Council,” Latest news: Global Wind report 2021, Mar. 2021, Available at https://gwec.net/global-wind-report-2021/.
R. adib, “Renewables 2021 Global Status Report: Renewable Energy Policy Network for The 21st Century,” National Technical University of Athens (NTUA), 2021, Available at https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf.
S. W. Ali, M. Sadiq, Y. Terriche, S. A. R. Naqvi, L. Q. N. Hoang, M. U. Mutarraf, M. A. Hassan, G. Yang, C.-L. Su, and J. M. Guerrero, “Offshore wind farm-grid integration: A review on infrastructure, challenges, and grid solutions,” in IEEE Access, vol. 9, pp. 102811–102827, July 2021, doi: 10.1109/ACCESS.2021.3098705.
P. Lakshmanan, R. Sun and J. Liang, “Electrical collection systems for offshore wind farms: A review,” in CSEE Journal of Power and Energy Systems, vol. 7, no. 5, pp. 1078-1092, Sept. 2021, doi: 10.17775/CSEEJPES.2020.05050.
Z. Alnasir, and M. Kazerani, “A small-scale standalone wind energy conversion system featuring SCIG, CSI and a novel storage integration scheme,” Renewable Energy, Vol. 89, pp. 360-370, Apr. 2016, doi:10.1016/j.renene.2015.12.041.
M. Tavoosi, “Dynamic modeling, stability analysis and control of wind turbines equipped with DFIG,” Master's Thesis, Tehran, Islamic Azad University, Science and Research Branch, 2013.
M. Tazil, V. Kumar, R.C. Bansal, S. Kong, Z.Y. Dong, W. Freitas, and H.D. Mathur, “Three-phase doubly fed induction generators: an overview,” IET Electric Power Applications, vol. 4, pp. 75-89, Nov. 2010, doi: 10.1049/iet-epa.2009.0071.
R. Cardenas, R. Pena, S. Alepuz and G. Asher, “Overview of Control Systems for the Operation of DFIGs in Wind Energy Applications,” in IEEE Transactions on Industrial Electronics, vol. 60, no. 7, pp. 2776-2798, July 2013, doi: 10.1109/TIE.2013.2243372.
L. H. Hansen, L. Helle, F. Blaabjerg, E. Ritchie, S. Munk-Nielsen, H. W. Bindner, P. E. Sørensen, and B. BakJensen, “Conceptual survey of generators and power electronics for wind turbines,” Denmark, Forskningscenter Risoe, Risoe-R No. 1205 (EN), Dec. 2001.
H. Polinder, F. F. A. van der Pijl, G. . -J. de Vilder and P. J. Tavner, “Comparison of direct-drive and geared generator concepts for wind turbines,” in IEEE Transactions on Energy Conversion, vol. 21, no. 3, pp. 725-733, Sept. 2006, doi: 10.1109/TEC.2006.875476.
A. Ragheb and M. Ragheb, “Wind turbine gearbox technologies,” 2010 1st International Nuclear & Renewable Energy Conference (INREC), 2010, pp. 1-8, doi: 10.1109/INREC.2010.5462549.
F. Blaabjerg, Y. Yang, D. Yang and X. Wang, “Distributed Power-Generation Systems and Protection,” in Proceedings of the IEEE, vol. 105, no. 7, pp. 1311-1331, July 2017, doi: 10.1109/JPROC.2017.2696878.
K. Ma, L. Tutelea, I. Boldea, D. M. Ionel, and F. Blaabjerg, “Power electronic drives, controls, and electric generators for large wind turbines–an overview,” Electric Power Components and Systems(T&F), vol. 43, no. 12, pp. 1406–1421, Jul. 2015, doi:10.1080/15325008.2015.1037470.
Tennet TSO GmbH, Requirements for offshore grid connections in the grid of TenneT TSO GmbH, Dec. 2012.
F. Blaabjerg, K. Ma and D. Zhou, “Power electronics and reliability in renewable energy systems,” 2012 IEEE International Symposium on Industrial Electronics, 2012, pp. 19-30, doi: 10.1109/ISIE.2012.6237053.
H. Wang, M. Liserre and F. Blaabjerg, “Toward Reliable Power Electronics: Challenges, Design Tools, and Opportunities,” in IEEE Industrial Electronics Magazine, vol. 7, no. 2, pp. 17-26, June 2013, doi: 10.1109/MIE.2013.2252958.
Y. Liu, W. Du, L. Xiao, H. Wang, S. Bu and J. Cao, “Sizing a Hybrid Energy Storage System for Maintaining Power Balance of an Isolated System With High Penetration of Wind Generation,” in IEEE Transactions on Power Systems, vol. 31, no. 4, pp. 3267-3275, July 2016, doi: 10.1109/TPWRS.2015.2482983.
Z. Tang, Y. Yang and F. Blaabjerg, “Power electronics: The enabling technology for renewable energy integration,” in CSEE Journal of Power and Energy Systems, vol. 8, no. 1, pp. 39-52, Jan. 2022, doi: 10.17775/CSEEJPES.2021.02850.
B. Novakovic and A. Nasiri, “Modular Multilevel Converter for Wind Energy Storage Applications,” in IEEE Transactions on Industrial Electronics, vol. 64, no. 11, pp. 8867-8876, Nov. 2017, doi: 10.1109/TIE.2017.2677314.
M. Liserre, R. Cárdenas, M. Molinas and J. Rodriguez, “Overview of Multi-MW Wind Turbines and Wind Parks,” in IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1081-1095, April 2011, doi: 10.1109/TIE.2010.2103910.
K. Ma and F. Blaabjerg, “Multilevel converters for 10 MW Wind Turbines,” Proceedings of the 2011 14th European Conference on Power Electronics and Applications, 2011, pp. 1-10.
Y. Liu, L. Jiang, Q. H. Wu and X. Zhou, “Frequency Control of DFIG-Based Wind Power Penetrated Power Systems Using Switching Angle Controller and AGC,” in IEEE Transactions on Power Systems, vol. 32, no. 2, pp. 1553-1567, March 2017, doi: 10.1109/TPWRS.2016.2587938.
S. A. Khajehoddin, M. Karimi-Ghartemani and M. Ebrahimi, “Optimal and Systematic Design of Current Controller for Grid-Connected Inverters,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 2, pp. 812-824, June 2018, doi: 10.1109/JESTPE.2017.2737987.
K. Ma and F. Blaabjerg, “Thermal optimised modulation methods of three-level neutral-point-clamped inverter for 10 MW wind turbines under low-voltage ride through,” IET Power Electronics, vol. 5, no. 6, pp. 920–927, Jul. 2012, doi: 10.1049/iet-pel.2011.0446.
Z. Qin, M. Liserre, F. Blaabjerg and Poh Chiang Loh, “Reliability-oriented energy storage sizing in wind power systems,” 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA), 2014, pp. 857-862, doi: 10.1109/IPEC.2014.6869688.
M. Mahzarnia, M. P. Moghaddam, P. T. Baboli and P. Siano, “A Review of the Measures to Enhance Power Systems Resilience,” in IEEE Systems Journal, vol. 14, no. 3, pp. 4059-4070, Sept. 2020, doi: 10.1109/JSYST.2020.2965993.
Y. Peng et al., “Coordinated Control Strategy of PMSG and Cascaded H-Bridge STATCOM in Dispersed Wind Farm for Suppressing Unbalanced Grid Voltage,” in IEEE Transactions on Sustainable Energy, vol. 12, no. 1, pp. 349-359, Jan. 2021, doi: 10.1109/TSTE.2020.2995457.
S. Ma, S. Li, Z. Wang and F. Qiu, “Resilience-Oriented Design of Distribution Systems,” in IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 2880-2891, July 2019, doi: 10.1109/TPWRS.2019.2894103.
“International Electrotechnical Commission. Technical Committee 88 Wind Turbines: Electrical Simulation Models Wind Turbines,” International Standard. International Electrotechnical Commission, [Online], 2015, Available at https://books.google.com.sa/books?id=t5HBtAEACAAJ.
A. Ellis, Y. Kazachkov, E. Muljadi, P. Pourbeik and J. J. Sanchez-Gasca, “Description and technical specifications for generic WTG models — A status report,” 2011 IEEE/PES Power Systems Conference and Exposition, 2011, pp. 1-8, doi: 10.1109/PSCE.2011.5772473.
K. Clark, N. W. Miller, and J. J. Sanchez-Gasca, “Modeling of ge wind turbine-generators for grid studies,” GE Energy, vol. 4, pp. 0885–8950, Apr. 2010.
S. D. Ahmed, F. S. M. Al-Ismail, M. Shafiullah, F. A. Al-Sulaiman and I. M. El-Amin, “Grid Integration Challenges of Wind Energy: A Review,” in IEEE Access, vol. 8, pp. 10857-10878, 2020, doi: 10.1109/ACCESS.2020.2964896.
M. Kiani and W. Lee, “Effects of Voltage Unbalance and System Harmonics on the Performance of Doubly Fed Induction Wind Generators,” 2008 IEEE Industry Applications Society Annual Meeting, 2008, pp. 1-7, doi: 10.1109/08IAS.2008.143.
J. LÓpez, E. GubÍa, P. Sanchis, X. Roboam and L. Marroyo, “Wind Turbines Based on Doubly Fed Induction Generator Under Asymmetrical Voltage Dips,” in IEEE Transactions on Energy Conversion, vol. 23, no. 1, pp. 321-330, March 2008, doi: 10.1109/TEC.2007.914317.
X. Zhao, Z. Yan, Y. Xue, and X.-P. Zhang, “Wind power smoothing by controlling the inertial energy of turbines with optimized energy yield,” in IEEE Access, vol. 5, pp. 23374–23382, 2017, doi: 10.1109/access.2017.2757929.
I. Colak, G. Fulli, S. Bayhan, S. Chondrogiannis, and S. Demirbas, “Critical aspects of wind energy systems in smart grid applications,” Renew. Sustain. Energy Rev., vol. 52, pp. 155–171, Dec. 2015, doi: 10.1016/j.rser.2015.07.062.
M. T. Al-Nory, “Optimal decision guidance for the electricity supply chain integration with renewable energy: Aligning smart cities research with sustainable development goals,” in IEEE Access, vol. 7, pp. 74996–75006, 2019, doi: 10.1109/access.2019.2919408.
J. Lerner, M. Grundmeyer, and M. Garvert, “The importance of wind forecasting,” Renew. Energy Focus, vol. 10, no. 2, pp. 64–66, Mar. 2009, doi: 10.1016/s1755-0084(09)70092-4.
G. Giebel and G. Kariniotakis, “Wind power forecasting a review of the state of the art,” in Renewable Energy Forecasting. Amsterdam, The Netherlands: Elsevier, pp. 59–109, 2017, doi: 10.1016/b978-0-08-100504-0.00003-2.
A. Lahouar and J. Ben Hadj Slama, “Hour-ahead wind power forecast based on random forests,” Renew. Energy, vol. 109, pp. 529–541, Aug. 2017, doi: 10.1016/j.renene.2017.03.064.
C. Monteiro, R. Bessa, V. Miranda,A. Botterud, J. Wang, G. Conzelmann, and I. Porto, “Wind power forecasting: State-of-the-art 2009,” Argonne Nat. Lab., Argonne, IL, USA, Tech. Rep. ANL/DIS-10-1, Nov. 2009, doi: 10.2172/968212.
Y. Wang, Q. Hu, D. Meng, and P. Zhu, “Deterministic and probabilistic wind power forecasting using a variational Bayesian-based adaptive robust multi-kernel regression model,” Appl. Energy, vol. 208, pp. 1097–1112, Dec. 2017, doi: 10.1016/j.apenergy.2017.09.043.
H. Liu, E. Erdem, and J. Shi, “Comprehensive evaluation of ARMA–GARCH(-M) approaches for modeling the mean and volatility of wind speed,” Appl. Energy, vol. 88, no. 3, pp. 724–732, Mar. 2011, doi: 10.1016/j.apenergy.2010.09.028.
C. D. Zuluaga, M. A. `lvarez, and E. Giraldo, “Short-term wind speed prediction based on robust Kalman filtering: An experimental comparison,” Appl. Energy, vol. 156, pp. 321–330, Oct. 2015, doi: 10.1016/j.apenergy.2015.07.043.
Y. Wang, H. Ma, D. Wang, G. Wang, J. Wu, J. Bian, and J. Liu, “A new method for wind speed forecasting based on copula theory,” Environ. Res., vol. 160, pp. 365–371, Jan. 2018, doi: 10.1016/j.envres.2017.09.034.
C. Archer, H. Simªo, W. Kempton, W. Powell, and M. Dvorak, “The challenge of integrating offshore wind power in the U.S. Electric grid. Part I: Wind forecast error,” Renew. Energy, vol. 103, pp. 346–360, Apr. 2017, doi: 10.1016/j.renene.2016.11.047.
Y. Huang, Q. Xu, X. Jiang, T. Zhang, and Y. Yang, “Modelling correlated forecast error for wind power in probabilistic load flow,” Elektronika Elektrotechnika, vol. 23, no. 5, pp. 61–66, Oct. 2017, doi: 10.5755/j01.eie.23.5.19244.
J. Naik, P. Satapathy, and P. Dash, “Short-term wind speed and wind power prediction using hybrid empirical mode decomposition and kernel ridge regression,” Appl. Soft Comput., vol. 70, pp. 1167–1188, Sep. 2018, doi: 10.1016/j.asoc.2017.12.010.
A. P. MarugÆn, F. P. G. MÆrquez, J. M. P. Perez, and D. Ruiz-HernÆndez, “A survey of artificial neural network in wind energy systems,” Appl. Energy, vol. 228, pp. 1822–1836, Oct. 2018, doi: 10.1016/j.apenergy.2018.07.084.
A. Zendehboudi, M. Baseer, and R. Saidur, “Application of support vector machine models for forecasting solar and wind energy resources: A review,” J. Cleaner Prod., vol. 199, pp. 272–285, Oct. 2018, doi: 10.1016/j.jclepro.2018.07.164.
Z. Liu, F. Wen, and G. Ledwich, “Optimal siting and sizing of distributed generators in distribution systems considering uncertainties,” in IEEE Trans. Power Del., vol. 26, no. 4, pp. 2541–2551, Oct. 2011, doi: 10.1109/tpwrd.2011.2165972.
L. Cheng, J. Lin, Y.-Z. Sun, C. Singh, W.-Z. Gao, and X.-M. Qin, “A model for assessing the power variation of a wind farm considering the outages of wind turbines,” in IEEE Trans. Sustain. Energy, vol. 3, no. 3, pp. 432–444, Jul. 2012, doi: 10.1109/tste.2012.2189251.
P. Siano and G. Mokryani, “Evaluating the benefits of optimal allocation of wind turbines for distribution network operators,” in IEEE Syst. J., vol. 9, no. 2, pp. 629–638, Jun. 2015, doi: 10.1109/jsyst.2013.2279733.
L. Xie, Y. Gu, X. Zhu, and M. G. Genton, “Short-term spatio-temporal wind power forecast in robust look-ahead power system dispatch,” in IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 511–520, Jan. 2014, doi: 10.1109/tsg.2013.2282300.
M. S. Islam, M. Mohandes, and S. Rehman, “Erratum to: Vertical extrapolation of wind speed using artificial neural network hybrid system,” Neural Comput. Appl., vol. 28, no. 8, p. 2369, Aug. 2017, doi: 10.1007/s00521-016-2435-0.
S. Zolfaghari, G. H. Riahy, and M. Abedi, “A new method to adequate assessment of wind farms’ power output,” Energy Convers. Manage., vol. 103, pp. 585–604, Oct. 2015, doi: 10.1016/j.enconman.2015.07.001.
A. R. Jordehi, “How to deal with uncertainties in electric power systems? A review,” Renew. Sustain. Energy Rev., vol. 96, pp. 145–155, Nov. 2018, doi: 10.1016/j.rser.2018.07.056.
X. He, H. Geng, and Gang Mu, “Modeling of wind turbine generators for power system stability studies: A review”, Renewable and Sustainable Energy Reviews, vol. 143, pp. 1-17, June 2021, doi:10.1016/j.rser.2021.110865.
N. Hatziargyriou et al., “Definition and Classification of Power System Stability – Revisited & Extended,” in IEEE Transactions on Power Systems, vol. 36, no. 4, pp. 3271-3281, July 2021, doi: 10.1109/TPWRS.2020.3041774.
J. Shaira, X. Xie, L. Wang, W. Liu, J. He, and H. Liu, “Overview of emerging subsynchronous oscillations in practical wind power systems,” Renewable and Sustainable Energy Reviews, vol. 99, pp. 159-168, Jan. 2019, doi: 10.1016/j.rser.2018.09.047.
S. Peyghami, P. Palensky and F. Blaabjerg, “An Overview on the Reliability of Modern Power Electronic Based Power Systems,” in IEEE Open Journal of Power Electronics, vol. 1, pp. 34-50, 2020, doi: 10.1109/OJPEL.2020.2973926.
M. Farrokhabadi et al., “Microgrid Stability Definitions, Analysis, and Examples,” in IEEE Transactions on Power Systems, vol. 35, no. 1, pp. 13-29, Jan. 2020, doi: 10.1109/TPWRS.2019.2925703.
G. Lammert, K. Yamashita, LDP. Ospina, H. Renner, SM. Villanueva, P. Pourbeik et al., “International industry practice on modelling and dynamic performance of inverter based generation in power system studies,” Cigre Science & Engineering 2017, vol. 8, pp. 25–37, 2017.
IEC 61400-27-1, “electrical simulation models — generic models (edition 2.0),” IEC; 2020, Available at https://webstore.iec.ch/publication/32564.
X. He, and H. Geng, “An overview on wind farm modelling for power system stability studies,” In: 8th renewable power generation conference (RPG 2019), pp. 1-8, 2019.
J. Zou, C. Peng, Y. Yan, H. Zheng, and Y. Li, “A survey of dynamic equivalent modeling for wind farm,” Renew. Sustain. Energy Rev., vol. 4. pp. 956-963,Dec. 2014, doi: 10.1016/j.rser.2014.07.157.
F. D. Kanellos and J. Kabouris, “Wind Farms Modeling for Short-Circuit Level Calculations in Large Power Systems,” in IEEE Transactions on Power Delivery, vol. 24, no. 3, pp. 1687-1695, July 2009, doi: 10.1109/TPWRD.2009.2022676.
M. K. Deshmukh and C. B. Moorthy, “Review on stability analysis of grid connected wind power,” Int. J. Elect. Electron. Eng. Res. Develop., vol. 3, 2014.
C. Buchhagen, C. Rauscher, A. Menze and J. Jung, “BorWin1 - First Experiences with harmonic interactions in converter dominated grids,” International ETG Congress 2015; Die Energiewende - Blueprints for the new energy age, 2015, pp. 1-7.
Wind Energy Systems Sub-Synchronous Oscillations: Events and Modeling. Accessed: Nov. 19, 2020. [Online]. Available at https://resourcecenter.ieee-pes.org/publications/technical-reports/PES_TP_TR80_AMPS _WSSO_070920.html.
M. Beza and M. Bongiorno, “On the Risk for Subsynchronous Control Interaction in Type 4 Based Wind Farms,” in IEEE Transactions on Sustainable Energy, vol. 10, no. 3, pp. 1410-1418, July 2019, doi: 10.1109/TSTE.2018.2889181.
P. Kundur, Power System Stability and Control. New York, NY, USA: McGraw-Hill, 1994. Accessed: Mar. 28, 2021. [Online]. Available at https://www.mheducation.co.in/html/9780070635159.html.
W. Du, J. Bi, T. Wang and H. Wang, “Impact of grid connection of large-scale wind farms on power system small-signal angular stability,” in CSEE Journal of Power and Energy Systems, vol. 1, no. 2, pp. 83-89, June 2015, doi: 10.17775/CSEEJPES.2015.00023.
F. Wu, X.-P. Zhang, and P. Ju, “Small signal stability analysis and control of the wind turbine with the direct-drive permanent magnet generator integrated to the grid,” Electr. Power Syst. Res., vol. 79, no. 12, pp. 1661–1667, Dec. 2009, doi: 10.1016/j.epsr.2009.07.003.
X. Li, Zhiyuan Zeng, Jianzhong Zhou and Yongchuan Zhang, "Small signal stability analysis of large scale variable speed wind turbines integration," 2008 International Conference on Electrical Machines and Systems, 2008, pp. 2526-2530.
P. Kundur et al., “Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions,” in IEEE Transactions on Power Systems, vol. 19, no. 3, pp. 1387-1401, Aug. 2004, doi: 10.1109/TPWRS.2004.825981.
Q. Hui, J. Yang, X. Yang, Z. Chen, Y. Li and Y. Teng, “A robust control strategy to improve transient stability for AC-DC interconnected power system with wind farms,” in CSEE Journal of Power and Energy Systems, vol. 5, no. 2, pp. 259-265, June 2019, doi: 10.17775/CSEEJPES.2019.00250.
M. Zamanifar, B.Fani, M.E.H.Golshana, and H.R.Karshenas, “Dynamic modeling and optimal control of DFIG wind energy systems using DFT and NSGA-II,” Electric Power Systems Research, vol. 108, pp. 50-58, Mar. 2014, doi: 10.1016/j.epsr.2013.10.021.
W. Guo, F. Liu, J. Si, D. He, R. Harley, and S. Mei, “Approximate dynamic programming based supplementary reactive power control for DFIG wind farm to enhance power system stability,” Neurocomputing, vol. 170, pp. 417–427, Dec. 2015, doi: 10.1016/j.neucom.2015.03.089.
R. Yousefian, R. Bhattarai and S. Kamalasadan, “Transient Stability Enhancement of Power Grid With Integrated Wide Area Control of Wind Farms and Synchronous Generators,” in IEEE Transactions on Power Systems, vol. 32, no. 6, pp. 4818-4831, Nov. 2017, doi: 10.1109/TPWRS.2017.2676138.
P. Yang, J. Zhang, X. Dong, and J. Zhang, “Impact of grid connection of large-scale wind power clusteron on small signal stability of power system,” in Proc. 3rd Int. Conf. Mech., Control Comput. Eng. (ICMCCE), Sep. 2018, doi: 10.1109/icmcce.2018.00081.
V. Vittal and R. Ayyanar, Grid Integration and Dynamic Impact of Wind Energy. New York, NY, USA: Springer, 2013.
D. Gautam, V. Vittal, and T. Harbour, “Impact of increased penetration of DFIG-based wind turbine generators on transient and small signal stability of power systems,” in IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1426–1434, Aug. 2009, doi: 10.1109/tpwrs.2009.2021234.
D. Naimi and T. Bouktir, “Impact of wind power on the angular stability of a power system,” Leonardo Electron. J. Practices Technol., vol. 7, no. 12, pp. 83–94, 2008.
NERC. Essential-Reliability-Services-Task-Force-(ERSTF). Accessed: Oct. 9, 2019. [Online]. Available at https://www.nerc.com/comm/Other/Pages/Essential-Reliability-Services-Task-Force-(ERSTF).aspx.
NERC(2014). A Concept Paper on Essential Reliability Services that Characterizes Bulk Power System Reliability. [Online]. Available at https://www.nerc.com/comm/Other/essntlrlbltysrvcstskfrcDL/ ERSTFConceptPaper.pdf.
Reliability Guideline—BPS-Connected Inverter-Based Resource Performance, NERC, Atlanta, GA, USA, 2018, p. 45.
D. F. Opila, A. M. Zeynu, and I. A. Hiskens, “Wind farm reactive support and voltage control,” in Proc. IEEE IREP Symp. Bulk Power Syst. Dyn. Control - VIII (IREP), Aug. 2010, doi: 10.1109/irep.2010.5563248.
M. Mohseni, “Enhanced reactive power support capability of fully rated converter-based wind generators,” in Proc. 37th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Nov. 2011, doi: 10.1109/iecon.2011.6119700.
D. Xie, Z. Xu, L. Yang, J. Ostergaard, Y. Xue, and K. P. Wong, “A comprehensive LVRT control strategy for DFIG wind turbines with enhanced reactive power support,” in IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3302–3310, Aug. 2013, doi: 10.1109/tpwrs.2013.2240707.
S. Liu, Q. Yang, K. Jia, and T. Bi, “Coordinated fault-ride-through strategy for doubly-fed induction generators with enhanced reactive and active power support,” IET Renew. Power Gener., vol. 10, no. 2, pp. 203–211, Feb. 2016, doi: 10.1049/iet-rpg.2015.0003.
A. Basit, F. Ali, M. Ishaq, S. Rashid, and S. Saher, “Overhead line length impact on reactive power support from wind power plant,” in Proc. IEEE 19th Int. Multi-Topic Conf. (INMIC), Dec. 2016, doi: 10.1109/inmic.2016.7840146.
J. Li, F. Liu, Z. Li, C. Shao, and X. Liu, “Grid-side flexibility of power systems in integrating large-scale renewable generations: A critical review on concepts, formulations and solution approaches,” Renew. Sustain. Energy Rev., vol. 93, pp. 272–284, Oct. 2018, doi: 10.1016/ j.rser.2018.04.109.
X. M. Liu, X. S. Niu, S. J. Jia, and J. Zhang, “Influence of wind power integration on power grid and its strategy,” Appl. Mech. Mater., vols. 347–350, pp. 1398–1403, Aug. 2013, doi: 10.4028/www.scientific.net/amm.347-350.1398.
D. Devaraj and R. Jeevajyothi, “Impact of fixed and variable speed wind turbine systems on power system voltage stability enhancement,” in Proc. IET Conf. Renew. Power Gener. (RPG), 2011, doi: 10.1049%2Fcp.2011.0199.
M. Albadi and E. El-Saadany, “Overview of wind power intermittency impacts on power systems,” Electric Power Syst. Res., vol. 80, no. 6, pp. 627–632, Jun. 2010, doi: 10.1016/j.epsr.2009.10.035.
O. Apata and D. T. O. Oyedokun, “Novel Reactive Power Compensation Technique for Fixed Speed Wind Turbine Generators,” in Proc. IEEE PES IAS Power Africa, Jun. 2018, doi: 10.1109/powerafrica.2018.8521131
J. Liu, W. Yao, J. Wen, J. Fang, L. Jiang, H. He, and S. Cheng, “Impact of power grid strength and PLL parameters on stability of gridconnected DFIG wind farm,” in IEEE Trans. Sustain. Energy, vol. 11, no. 1, pp. 545–557, Jan. 2020, doi: 10.1109/tste.2019.2897596.
B. Kroposki, “Integrating high levels of variable renewable energy into electric power systems,” J. Mod. Power Syst. Clean Energy, vol. 5, no. 6, pp. 831–837, Nov. 2017, doi: 10.1007/s40565-017-0339-3.
Y. Zhou, D. D. Nguyen, P. C. Kjaer, and S. Saylors, “Connecting wind power plant with weak grid - Challenges and solutions,” in Proc. IEEE Power Energy Soc. Gen. Meeting, Jul. 2013, doi: 10.1109/pesmg.2013.6672755.
DEIF. LVRT—Low Voltage Ride Through: Wind Power. Accessed: Oct. 9, 2019. [Online]. Available at https://www.deif.com/wind-power/technology/lvrt—low.
G. Liu, C. Zhang, S. Wang, and F. Shi, “An integrated control strategy of PMSG-based wind turbine generation system to improve its fault ridethrough capability by using an energy storage device,” in Proc. Int. Conf. Renew. Power Gener. (RPG), 2015, doi: 10.1049/cp.2015.0309.
J. D. Glover, M. S. Sarma, and T. Overbye, Power System Analysis & Design, SI Version. Boston, MA, USA: Cengage Learning, 2012.
A. El-Sattar, N. Saad, and M. S. El-Dein, “Dynamic response of doubly fed induction generator variable speed wind turbine under fault,” Electr. Power Syst. Res., vol. 78, no. 7, pp. 1240–1246, Jul. 2008, doi: 10.1016/j.epsr.2007.10.005.
D. Zhu, X. Zou, L. Deng, Q. Huang, S. Zhou, and Y. Kang, “Inductanceemulating control for DFIG-based wind turbine to ride-through grid faults,”in IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8514–8525, Nov. 2017, doi: 10.1109/tpel.2016.2645791.
J. Mohammadi, S. Vaez-Zadeh, S. Afsharnia, and S. Farhangi, “Improved fault ride through strategy for doubly fed induction generator based wind turbines under both symmetrical and asymmetrical grid faults,” IET Renew. Power Gener., vol. 10, no. 8, pp. 1114–1122, Sep. 2016, doi: 10.1049/iet-rpg.2015.0586.
S. B. Naderi, M. Negnevitsky, A. Jalilian, M. T. Hagh, and K. M. Muttaqi, “Optimum resistive type fault current limiter: An efficient solution to achieve maximum fault ride-through capability of fixed-speed wind turbines during symmetrical and asymmetrical grid faults,” in IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 538–548, Jan. 2017, doi: 10.1109/tia.2016.2611665.
M. Y. Worku, M. A. Abido, and R. Iravani, “PMSG based wind system for real-time maximum power generation and low voltage ride through,” J. Renew. Sustain. Energy, vol. 9, no. 1, Jan. 2017, Art. no. 013304, doi: 10.1063/1.4976141.
M. Alam, M. Abido, A. Hussein, and I. El-Amin, “Fault ride through capability augmentation of a DFIG-based wind integrated VSC-HVDC system with non-superconducting fault current limiter,” Sustainability, vol. 11, no. 5, p. 1232, Feb. 2019, doi: 10.3390/su11051232.
G. Lalor, A. Mullane, and M. O’Malley, “Frequency control and wind turbine technologies,” in IEEE Trans. Power Syst., vol. 20, no. 4, pp. 1905–1913, Nov. 2005, doi: 10.1109/tpwrs.2005.857393.
S. Sang, C. Zhang, X. Cai, M. Molinas, J. Zhang, and F. Rao, “Control of a type-IV wind turbine with the capability of robust grid-synchronization and inertial response for weak grid stable operation,” in IEEE Access, vol. 7, pp. 58553–58569, 2019, doi: 10.1109/access.2019.2914334.
J. Morren, S. De Haan, W. Kling, and J. Ferreira, “Wind turbines emulating inertia and supporting primary frequency control,” in IEEE Trans. Power Syst., vol. 21, no. 1, pp. 433–434, Feb. 2006, doi: 10.1109/tpwrs.2005.861956.
J. F. Conroy and R. Watson, “Frequency response capability of full converter wind turbine generators in comparison to conventional generation,” in IEEE Trans. Power Syst., vol. 23, no. 2, pp. 649–656, May 2008, doi: 10.1109/tpwrs.2008.920197.
D. Ochoa and S. Martinez, “Fast-frequency response provided by DFIG-wind turbines and its impact on the grid,” in IEEE Trans. Power Syst., vol. 32, no. 5, pp. 4002–4011, Sep. 2017, doi: 10.1109/tpwrs.2016.2636374.
Siemens.Wind Turbine Technical Features—Turbine Technology. Accessed: Mar. 5, 2017. [Online]. Available at https://www.siemens.com/global/en/home/markets/wind/turbines/technology/features.html.
A. Attya, J. Dominguez-Garcia, and O. Anaya-Lara, “A review on frequency support provision by wind power plants: Current and future challenges,” Renew. Sustain. Energy Rev., vol. 81, pp. 2071–2087, Jan. 2018, doi: 10.1016/j.rser.2017.06.016.
Fast Frequency Response in the NEM, Austral. Energy Market Operator, Melbourne, VIC, Australia, 2017.
E. Muljadi, V. Gevorgian, M. Singh, and S. Santoso, “Understanding inertial and frequency response of wind power plants,” in Proc. IEEE Power Electron. Mach. Wind Appl., Jul. 2012, doi: 10.1109/pemwa.2012.6316361.
J. H. Eto, J. Undrill, P. Mackin, and J. Ellis, “Frequency control requirements for reliable interconnection frequency response,” Lawrence Berkeley Nat. Lab., Interconnection Freq. Response, Berkeley, CA, USA, 2018, pp. 1–116. [Online]. Available at https://certs.lbl.gov/project/interconnection-frequency-response.
E. Hsieh and R. Anderson, “Grid flexibility: The quiet revolution,” Electr. J., vol. 30, no. 2, pp. 1–8, Mar. 2017, doi: 10.1016/j.tej.2017.01.009.
R. Chen, J. Wang, A. Botterud, and H. Sun, “Wind power providing flexible ramp product,” in IEEE Trans. Power Syst., vol. 32, no. 3, pp. 2049–2061, May 2017, doi: 10.1109/tpwrs.2016.2603225.
M. Cui, J. Zhang, H. Wu, and B.-M. Hodge, “Wind-friendly flexible ramping product design in multi-timescale power system operations,” in IEEE Trans. Sustain. Energy, vol. 8, no. 3, pp. 1064–1075, Jul. 2017, doi: 10.1109/tste.2017.2647781.
X. Fang, B.-M. Hodge, V. Krishnan, and F. Li, “Potential of wind power to provide flexible ramping products and operating reserve,” in Proc. IEEE Power Energy Society Gen. Meeting (PESGM), Aug. 2018, doi: 10.1109/pesgm.2018.8586436.
R. Abhinav and N. M. Pindoriya, “Opportunities and key challenges for wind energy trading with high penetration in Indian power market,” Energy for Sustain. Develop., vol. 47, pp. 53–61, Dec. 2018, doi: 10.1016/j.esd.2018.08.007.
X. Ma and Y. Zhou, “Coordination of generation and transmission planning for power system with large wind farms,” Energy Procedia, vol. 16, pp. 1979–1985, 2012, doi: 10.1016/j.egypro.2012.01.302.
L. S. Vargas, G. Bustos-Turu, and F. Larrain, “Wind power curtailment and energy storage in transmission congestion management considering power plants ramp rates,” in Proc. IEEE Power Energy Soc. Gen. Meeting, Jul. 2015, doi: 10.1109/pesgm.2015.7285712.
L. Bird, D. Lew, M. Milligan, E. M. Carlini, A. Estanqueiro, D. Flynn, E. Gomez-Lazaro, H. Holttinen, N. Menemenlis, A. Orths, P. B. Eriksen, J. C. Smith, L. Soder, P. Sorensen, A. Altiparmakis, Y. Yasuda, and J. Miller, “Wind and solar energy curtailment: A review of international experience,” Renew. Sustain. Energy Rev., vol. 65, pp. 577–586, Nov. 2016, doi: 10.1016/j.rser.2016.06.082.
Y. Gu and L. Xie, “Fast sensitivity analysis approach to assessing congestion induced wind curtailment,” in IEEE Trans. Power Syst., vol. 29, no. 1, pp. 101–110, Jan. 2014, doi: 10.1109/tpwrs.2013.2282286.
L. Bird, J. Cochran, and X. Wang, “Wind and solar energy curtailment: Experience and practices in the United States,” Nat. Renew. Energy Lab., Golden, CO, USA, Tech. Rep. NREL/TP-6A20-60983, Mar. 2014, doi: 10.2172/1126842.
J. Jorgensen, T. Mai, and G. Brinkman, “Reducing wind curtailment through transmission expansion in a wind vision future,” Nat. Renew. Energy Lab., Golden, CO, USA, Tech. Rep. NREL/TP-6A20-67240, Jan. 2017, doi: 10.2172/1339078.
A. Nourian and S. Madnick, “A systems theoretic approach to the security threats in cyber physical systems applied to stuxnet,” in IEEE Trans. Dependable Secure Comput., vol. 15, no. 1, pp. 2–13, Jan. 2018, doi: 10.1109/tdsc.2015.2509994.
G. Bedi, G. K. Venayagamoorthy, R. Singh, R. R. Brooks and K. -C. Wang, “Review of Internet of Things (IoT) in Electric Power and Energy Systems,” in IEEE Internet of Things Journal, vol. 5, no. 2, pp. 847-870, April 2018, doi: 10.1109/JIOT.2018.2802704.
Y. Zhang, Y. Xiang, and L. Wang, “Power system reliability assessment incorporating cyber attacks against wind farm energy management systems,” in IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2343–2357, Sep. 2017, doi: 10.1109/tsg.2016.2523515.
J. Lai, B. Duan, Y. Su, L. Li, and Q. Yin, “An active security defense strategy for wind farm based on automated decision,” in Proc. IEEE Power Energy Soc. Gen. Meeting, Jul. 2017, doi: 10.1109/pesgm.2017.8274638.
M. Meskin, A. Domijan, I. Grinberg, “Impact of distributed generation on the protection systems of distribution networks: analysis and remedies – review paper,” IET Generation Transmission & Distribution, vol. 14, pp. 5944-5960,Nov. 2020, doi: 10.1049/iet-gtd.2019.1652.
H. Hooshyar and M. E. Baran, “Fault Analysis on Distribution Feeders With High Penetration of PV Systems,” in IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 2890-2896, Aug. 2013, doi: 10.1109/TPWRS.2012.2227842.
E. H. Camm et al., “Characteristics of wind turbine generators for wind power plants,” in Proc. IEEE Power Energy Soc. Gen. Meeting, Jul. 2009, doi: 10.1109/pes.2009.5275330.
R. Walling et al., “Fault current contributions from wind plants,” in Proc. 68th Annu. Conf. Protective Relay Eng. (CPRE), Mar. 2015, pp. 137–227, doi: 10.1109/cpre.2015.7102165.
E. Muljadi, N. Samaan, V. Gevorgian, J. Li, and S. Pasupulati, “Short circuit current contribution for different wind turbine generator types,” in Proc. IEEE PES Gen. Meeting, Jul. 2010, doi: 10.1109/ pes.2010.5589677.
B. Fani, H. Bisheh and A. Karami-Horestani, “An offline penetration-free protection scheme for PV-dominated distribution systems,” Electric Power Systems Research, vol. 157, pp. 1-9, Apr. 2018, doi: 10.1016/j.epsr.2017.11.020.
E. Abbaspour, B. Fani and A. Karami-Horestani, “Adaptive scheme protecting renewable-dominated micro-grids against usual topology-change events,” IET Renewable Power Generation, vol. 15, pp. 1–13, May 2021, doi: 10.1049/rpg2.12193.
V. Telukunta, J. Pradhan, A. Agrawal, M. Singh, S. G. Srivani, and and, “Protection challenges under bulk penetration of renewable energy resources in power systems: A review,” CSEE J. Power Energy Syst., vol. 3, no. 4, pp. 365–379, Dec. 2017, doi: 10.17775/cseejpes.2017.00030.
G. Yang, M. Dong, Z. Zhou, C. Zhou, D. Du, Z. Zhan, and D. Yang, “The influences and countermeasures of wind farm access to transmission line differential protection,” in Proc. IEEE Power Electron. Mach. Wind Appl., Jul. 2012, doi: 10.1109/pemwa.2012.6316373.
R. Dubey, S. Samantaray, B. Panigrahi, and G. Venkoparao, “Adaptive distance relay setting for parallel transmission network connecting wind farms and UPFC,” Int. J. Electr. Power Energy Syst., vol. 65, pp. 113–123, Feb. 2015, doi: 10.1016/j.ijepes.2014.09.033.
M. K. Jena and S. R. Samantaray, “Data-Mining-based intelligent differential relaying for transmission lines including UPFC and wind farms,” in IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 1, pp. 8–17, Jan. 2016, doi: 10.1109/tnnls.2015.2404775.
L. Tripathy, M. K. Jena, and S. Samantaray, “Differential relaying scheme for tapped transmission line connecting UPFC and wind farm,” Int. J. Elect. Power Energy Syst., vol. 60, pp. 245–257, Sep. 2014, doi: 10.1016/j.ijepes.2014.02.024.
E. C. Piesciorovsky and N. N. Schulz, “Comparison of programmable logic and setting group methods for adaptive overcurrent protection in microgrids,” Electr. Power Syst. Res., vol. 151, pp. 273–282, Oct. 2017, doi: 10.1016/j.epsr.2017.05.035.
V. Nougain, S. Mishra, and A. K. Pradhan, “MVDC microgrid protection using a centralized communication with a localized backup scheme of adaptive parameters,” in IEEE Trans. Power Del., vol. 34, no. 3, pp. 869–878, Jun. 2019, doi: 10.1109/tpwrd.2019.2899768.
L. Zhang, N. Tai, W. Huang, and Y. Wang, “Fault distance estimationbased protection scheme for DC microgrids,” J. Eng., vol. 2019, no. 16, pp. 1199–1203, Mar. 2019, doi: 10.1049/joe.2018.8614.
A. Abdali, R. Noroozian, and K. Mazlumi, “Simultaneous control and protection schemes for DC multi microgrids systems,” Int. J. Elect. Power Energy Syst., vol. 104, pp. 230–245, Jan. 2019, doi: 10.1016/j.ijepes.2018.06.054.
R. Mohanty and A. K. Pradhan, “DC ring bus microgrid protection using the oscillation frequency and transient power,” in IEEE Syst. J., vol. 13, no. 1, pp. 875–884, Mar. 2019, doi: 10.1109/jsyst.2018.2837748.
R. Mohanty and A. K. Pradhan, “Protection of smart DC microgrid with ring configuration using parameter estimation approach,” in IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6328–6337, Nov. 2018, doi: 10.1109/tsg.2017.2708743.
M. Singh and A. Agrawal, “Voltage–current–time inverse-based protection coordination of photovoltaic power systems,” IET Gener., Transmiss. Distrib., vol. 13, no. 6, pp. 794–804, Mar. 2019, doi: 10.1049/ietgtd.2018.6143.
U. Shahzad, S. Kahrobaee, and S. Asgarpoor, “Protection of distributed generation: Challenges and solutions,” Energy Power Eng., vol. 09, no. 10, pp. 614–653, 2017, doi: 10.4236/epe.2017.910042.
E. Hossain, M. R. Tür, S. Padmanaban, S. Ay and I. Khan, “Analysis and Mitigation of Power Quality Issues in Distributed Generation Systems Using Custom Power Devices,” in IEEE Access, vol. 6, pp. 16816-16833, 2018, doi: 10.1109/ACCESS.2018.2814981.
V. Preciado, M. Madrigal, E. Muljadi, and V. Gevorgian, “Harmonics in a wind power plant,” in Proc. IEEE Power Energy Society Gen. Meeting, Jul. 2015, doi: 10.1109/pesgm.2015.7285774.
I. Colak, S. Sagiroglu, G. Fulli, M. Yesilbudak, and C.-F. Covrig, “A survey on the critical issues in smart grid technologies,” Renew.Sustain. Energy Rev., vol. 54, pp. 396–405, Feb. 2016, doi: 10.1016/j.rser.2015.10.036.
A. Y. Goharrizi, J. C. G. Alonso, E. Borisova, F. Mosallat, and D. Muthumuni, “Benchmark model of type-III wind turbine for research and development applications,” in Proc. IEEE Can. Conf. Elect. Comput. Eng. (CCECE), May 2018, doi: 10.1109/ccece.2018.8447781.
C. Ruiz, M. Znbiaga, G. Abad, D. Madariaga, and J. Arza, “Validation of a wind turbine harmonic model based on the generic type 4 wind turbine standard,” in Proc. 20th Eur. Conf. Power Electron. Appl. (EPE ECCE Eur.), 2018, p. 1.
E. H. Mayoral, M. `. H. López, H. J. C. Marrero, and R. I. Cortez, “Harmonic analysis of the wind energy conversion system connected with electrical network,” in Compendium of New Techniques in Harmonic Analysis. London, U.K.: IntechOpen, 2018, doi: 10.5772/intechopen.74584.
D. Schwanz, M. Bollen, and A. Larsson, “Some methods for harmonic emission determination in wind power plants,” in Proc. IEEE 18th Int. Conf. Harmon. Qual. Power (ICHQP), May 2018, doi:10.1109/ichqp.2018.8378934.
H. García, J. Segundo, O. Rodríguez-HernÆndez, R. Campos-Amezcua, and O. Jaramillo, “Harmonic modelling of the wind turbine induction generator for dynamic analysis of power quality,” Energies, vol. 11, no. 1, p. 104, Jan. 2018, doi: 10.3390/en11010104.
J. B. Noshahr, “Emission phenomenon of supra-harmonics caused by switching of full-power frequency converter of wind turbines generator (PMSG) in smart grid,” in Proc. IEEE 16th Int. Conf. Environ. Elect. Eng. (EEEIC), Jun. 2016, doi: 10.1109/eeeic.2016.7555625.
A. Reis, L. P. Moura, and J. C. de Oliveira, “Mitigation of harmonic current produced by wind turbine throughout converter switching control,” in Proc. 17th Int. Conf. Harmon. Qual. Power (ICHQP), Oct. 2016, doi: 10.1109/ichqp.2016.7783477.
U. Vargas and A. Ramirez, “Extended harmonic domain model of a wind turbine generator for harmonic transient analysis,” in IEEE Trans. Power Del., vol. 31, no. 3, pp. 1360–1368, Jun. 2016, doi: 10.1109/tpwrd.2015.2499701.
J. G. Ndirangu, J. N. Nderu, A. M. Muhia, and C. M. Maina, “Power quality challenges and mitigation measures in grid integration of wind energy conversion systems,” in Proc. IEEE Int. Energy Conf. (ENERGYCON), Jun. 2018, doi: 10.1109/energycon.2018.8398823.
C. Pazhanimuthu and S. Ramesh, “Grid integration of renewable energy sources (RES) for power quality improvement using adaptive fuzzy logic controller based series hybrid active power filter (SHAPF),” J. Intell. Fuzzy Syst., vol. 35, no. 1, pp. 749–766, Jul. 2018, doi: 10.3233/jifs-171236.
A. F. Zobaa and S. H. E. A. Aleem, Eds., Power Quality in Future Electrical Power Systems. London, U.K.: Institution of Engineering and Technology, 2017.
Rural Electrification, Wind Power, Standard IEC 61400-21:2008, IEC Webstore. Accessed: Jul. 22, 2020. [Online]. Available at https://webstore.iec.ch/publication/5434.
T. Sun, Z. Chen and F. Blaabjerg, “Flicker study on variable speed wind turbines with doubly fed induction generators,” in IEEE Transactions on Energy Conversion, vol. 20, no. 4, pp. 896-905, Dec. 2005, doi: 10.1109/TEC.2005.847993.
I. A. Ahmed and A. F. Zobaa, “Comparative power quality study of variable speed wind turbines,” Int. J. Energy Convers., vol. 4, no. 4, p. 97, Jul. 2016. Doi: 10.15866/irecon.v4i4.10828.
IEEE Approved Draft Recommended Practice for Monitoring Electric Power Quality, IEEE Standard P1159/D7, Apr. 2019. Accessed: Aug. 23, 2020. [Online]. Available: https://ieeexplore.ieee.org/document/8707146/versions#versions.
M. N. Eskander and S. I. Amer, “Mitigation of voltage dips and swells in grid-connected wind energy conversion systems,” IETE J. Res., vol. 57, no. 6, pp. 515–524, Nov. 2011. doi: 10.4103/0377-2063.92267.
A. A. Alkahtani et al., “Power Quality in Microgrids Including Supraharmonics: Issues, Standards, and Mitigations,” in IEEE Access, vol. 8, pp. 127104-127122, 2020, doi: 10.1109/ACCESS.2020.3008042.
A. Ulbig, “Grid integration challenges of renewable energy sources and prospective solutions,” presented at the Swiss Federal Inst. Technol. Zurich, 2013.
O. P. Mahela, and A. G. Shaik, “Comprehensive overview of grid interfaced wind energy generation systems,” Renew.Sustain. Energy Rev., vol. 57, pp. 260-281, Dec. 2015, doi: 10.1016/j.rser.2015.12.048.
FERC. (Sep. 21, 2016). Large Generator Interconnection Agreement (LGIA), Appendix G. Accessed: Jun. 2016. [Online]. Available at https://www.federalregister.gov/d/05-11678/page-35010.
National Research Council, Assessment of Research Needs for Wind Turbine Rotor Materials Technology. Washington, DC, USA: Academies, 1991. [Online]. Available: https://www.nap.edu/catalog/1824/assessment-of-research-needs-for-wind-turbine-rotor-materials-technology.
W. Wu and B. Lin, “Application value of energy storage in power grid: A special case of China electricity market,” Energy, vol. 165, pp. 1191–1199, Dec. 2018, doi: 10.1016/j.energy.2018.09.202.
D. Larcher and J.-M. Tarascon, “Towards greener and more sustainable batteries for electrical energy storage,” Nature Chem, vol. 7, no. 1, pp. 19–29, Jan. 2015, doi: 10.1038/nchem.2085.
S. Hajiaghasi, A. Salemnia, and M. Hamzeh, “Hybrid energy storage system for microgrids applications: A review,” J. Energy Storage, vol. 21, pp. 543–570, Feb. 2019, doi: 10.1016/j.est.2018.12.017.
J. Wu, B. Zhang, H. Li, Z. Li, Y. Chen, and X. Miao, “Statistical distribution for wind power forecast error and its application to determine optimal size of energy storage system,” Int. J. Elect. Power Energy Syst., vol. 55, pp. 100–107, Feb. 2014, doi: 10.1016/j.ijepes.2013.09.003.
B. M. Hodge and M. Milligan, “Wind power forecasting error distributions over multiple timescales,” in Proc. IEEE Power Energy Society Gen. Meeting, Jul. 2011, doi: 10.1109/pes.2011.6039388.
W. Hu, Y. Min, Y. Zhou, and Q. Lu, “Wind power forecasting errors modelling approach considering temporal and spatial dependence,” J. Mod. Power Syst. Clean Energy, vol. 5, no. 3, pp. 489–498, May 2017, doi: 10.1007/s40565-016-0263-y.
P. Haessig, B. Multon, H. B. Ahmed, S. Lascaud, and P. Bondon, “Energy storage sizing for wind power: Impact of the autocorrelation of day-ahead forecast errors,” Wind Energy, Oct. 2013, doi: 10.1002/we.1680.
J. Shi, L. Wang, W.-J. Lee, X. Cheng, and X. Zong, “Hybrid Energy Storage System (HESS) optimization enabling very short-term wind power generation scheduling based on output feature extraction,” Appl. Energy, vol. 256, Dec. 2019, Art. no. 113915, doi: 10.1016/j.apenergy.2019.113915.
J. Gan, J. Li, W. Qi, A. Kurban, Y. He, and S. Guo, “A review on capacity optimization of hybrid renewable power system with energy storage,” in Proc. E3S Web Conf., vol. 118, p. 02055, 2019, doi: 10.1051/e3sconf/201911802055.
B. Singh, and P. K. Dubey, “istributed power generation planning for distribution networks using electric vehicles: Systematic attention to challenges and opportunities,” J. Energy Storage, vol. 48, pp. 1–44, Feb. 2022, doi: 10.1016/j.est.2022.104030.
_||_