اهمیت اسیدهای چرب زنجیر کوتاه سنتز شده توسط میکروارگانیسمهای روده، به عنوان یک عامل اپی ژنتیک، در کاهش ابتلا به سرطان کولون
محورهای موضوعی :
ژنتیک
شیوا دارابی
1
,
فاطمه کشاورزی
2
,
پرویز اشتری
3
,
فرحناز معتمدی سده
4
,
بهروز علیرضاپور
5
1 - دانشجوی دکتری بیوشیمی، گروه زیستشناسی، واحد سنندج، دانشگاه آزاد اسلامی، سنندج، ایران.
2 - دانشیار، گروه زیستشناسی، واحد سنندج، دانشگاه آزاد اسلامی، سنندج، ایران
3 - دانشیار، دانشکده تحقیقات کاربردی پرتو، پژوهشکده علوم و فناوری هستهای، کرج، ایران
4 - دانشیار، گروه دامپزشکی و علوم دامی، مرکز تحقیقات کشاورزی هستهای، پژوهشکده علوم و فناوری هستهای، کرج، ایران.
5 - دانشیار، مرکز تحقیقات کاربردی پرتو، پژوهشکده علوم و فناوری هستهای، تهران، ایران.
تاریخ دریافت : 1401/01/21
تاریخ پذیرش : 1401/03/16
تاریخ انتشار : 1401/04/01
کلید واژه:
فاکتورهای اپی ژنتیک,
رژیم غذایی,
اسیدهای چرب زنجیره کوتاه (SCFAs),
سرطان کولون,
میکروبیوتای روده,
چکیده مقاله :
هدف: مکانیسمهای درگیر در پاتوژنز سرطان کولورکتال هنوز به درستی شناخته نشدهاند، اما رژیم غذایی فاکتور اصلی است که اثرات چند جانبهای از جمله تغییر در متابولوم و ترانسکریپتوم میزبان دارد. متابولیتهایی که از رژیم غذایی حاصل میشوند، میتوانند به طور مستقیم بر متابولیسم کل بدن تاثیر بگذارند. هدف پژوهش حاضر، مرور تاثیر میکروبیوتای روده به واسطه سنتز اسیدهای چرب زنجیره کوتاه (استات، بوتیرات و پروپیونات)، و در نتیجه القای بیان ژن سیتوکروم P4501A1 در پیشگیری و درمان سرطان کولون است.مواد و روشها: با استفاده از کلمات کلیدی، جستجو و جمعآوری مقالات از پایگاههای اطلاعاتی و استنادی پابمد (PubMed)، آی. اس. آی. (ISI web of Knowledge)، اسکوپوس (SCOPUS)، گوگل اسکالر (Google Scholar)، پروکوئست(ProQuest) ، اکسفورد (Oxford) و اویدو(Ovid) و نیز معروفترین پایگاههای اطلاعاتی داخلی شامل پایگاه جهاد دانشگاهی (SID)، ایرانمدکس (Iranmedex)، مگیران (Magiran)، ایرانداک (Irandoc) و مدلیب(MedLib) انجام شد.یافتهها: مواد ترکیبات غذایی هضم نشده که وارد روده بزرگ میشوند، توسط میکروبیوتای روده تخمیر شده و متابولیتهای تخمیری تولید میشود که طیف گستردهای از عملکردهای موثر را انجام میدهند. برخی از این متابولیتها با سیستم ایمنی روده تعامل دارند، از جمله اسیدهای چرب زنجیره کوتاه، لیگاندهای گیرنده آریل هیدروکربن و متابولیتهای اسیدهای صفراوی که در القای هموستاز ایمنی روده نقش دارند. به نظر میرسد که اثرات حفاظتی اسیدهای چرب زنجیره کوتاه سنتز شده توسط میکروارگانیسمها، در سرطان کولون به واسطه مهار فعالیت هیستون داستیلازی و تقویت گیرنده آریل هیدروکربن و در نتیجه حفاظت از DNA در برابر آسیبهای ناشی از کارسینوژنها، با فعالسازی آنزیمهای متابولیزهکننده زنوبیوتیک، مانند سیتوکروم P4501A1، اعمال شود.نتیجهگیری: پژوهش حاضر دیدگاه جدیدی را در رابطه با اهمیت میکروبیوتا روده به واسطه تولید اسیدهای چرب زنجیره کوتاه به ویژه استات، بوتیرات و پروپیونات به عنوان اهداف دارویی در جهت پیشگیری و حتی درمان سرطان کلورکتال ارائه داد.
چکیده انگلیسی:
Objective: The mechanisms involved in the pathogenesis of colorectal cancer are still not well understood, but diet is the main factor that has multifaceted effects, including changes in the host's metabolome and transcriptome. Metabolites obtained from diet can directly affect the metabolism of the whole body. The purpose ofthis study is to review the effect of intestinal microbiota through the synthesis ofshort chain fatty acids (acetate, butyrate and propionate), and as a result, the induction of cytochrome P4501A1 gene expression in the prevention and treatment of colon cancer.Materials and methods: Using keywords, searching and collecting articles from PubMed and citation databases, I.S. I. (ISI web of Knowledge), SCOPUS, Google Scholar, ProQuest, Oxford and Ovid, as well as the most famous internal databases including the Academic Jihad Database (SID), Iranmedex, Magiran, Irandoc and MedLib were performed.Findings: Undigested food ingredients that enter the large intestine are fermented by intestinal microbiota and fermentative metabolites are produced that perform a wide range of effective functions. Some of these metabolites interact with the intestinal immune system, including short-chain fatty acids, aryl hydrocarbon receptor ligands, and bile acid metabolites that play a role in inducing intestinal immune homeostasis.It seems that the protective effects of short chain fatty acids synthesized by microorganisms, in colon cancer by inhibiting the activity of histone deacetylase and strengthening the aryl hydrocarbon receptor and thus protecting DNA against damage caused by carcinogens, by activating xenobiotic metabolizing enzymes, such as Cytochrome P4501A1, apply.Conclusion: The present study presented a new perspective regarding the importance of intestinal microbiota through the production of short chain fatty acids, especially acetate, butyrate and propionate, as medicinal targets for the prevention and even treatment of colorectal cancer.
منابع و مأخذ:
Zheng P, Li Zh & Zhou Zh. Gut microbiome in type 1 diabetes: A comprehensive review. Diabetes Metab Res Rev. 2018; 34: e3043. DOI:org/10.1002/dmrr.3043
Poppe J, Baarle L, Matteoli G & Verbeke K. How microbial food fermentation supports a tolerant gut. Molecular Nutrition & Food Research. 2020. DOI: 1002/mnfr.202000036
Mayer EA, Savidge T & Shulman RJ. Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology. 2014; 146:1500-12.
DOI: 1053/j.gastro.2014.02.037
Macfarlane, GT & Macfarlane, S. Bacteria,colonic fermentation and gastro intestinal health. AOAC Int. 2012; 95: 50-60.
Xu W, Zhou Y & Hang X, Shen D. Current evidence on the relationship between CYP1B1 polymorphisms and lung cancer risk: a metaanalysis. Mol Biol Rep. 2012; 39(3): 2821-9.
Beyerle J, Frei E, Stiborov M, Habermann N & Ulrich CM. Biotransformation of xenobiotics in the human colon and rectum and its association with colorectal cancer. Drug Metab Rev; 2015; 47: 199-221.
Gutierrez-Vazquez C & Quintana FJ. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity. 2018; 48(1): 19-33.
Donaldson GP, Lee SM & Mazmanian SK. Gut biogeography of the bacterial microbiota. Nature reviews. Microbiology. 2016; 14(1): 20-32.
Li H & et al. The outer mucus layer hosts a distinct intestinal microbial niche. Nature Communications. 2015; 6(1): 8292.
Franzosa EA & et al. Identifying personal microbiomes using metagenomic codes. Proceedings of the National Academy of Sciences of the United States of America. 2015; 112(22): 2930-8.
Costea PI & et al. Enterotypes in the landscape of gut microbial community composition. Nature Microbiology. 2017; 3(1): 8-16.
Ha CW, Lam YY & Holmes AJ. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health. World Journal of Gastroenterology. 2014; 20(44): 16498-16517.
Marinelli L, Martin-Gallausiaux C, Bourhis J-M, B_eguet-Crespel F, Blotti_ere HM & Lapaque N. Identification of the novel role of butyrate as Ahr ligand in human intestinal epithelial cells. Sci Rep. 2019; 9(1): 643.
Van der Beek CM & et al. Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clin Sci (Lond). 2016; 130(22): 2073-2082. DOI:1042/CS20160263
Louis P, Hold G & Flint HJ.The gut microbiota, bacterial metabolites and colorectal cancer. Rev.Microbiol. 2014; 12: 661-672. DOI: 10.1038/nrmicro3344
Reichardt N & et al. Phylogenetic distribution of three pathways forpropionate production within the human gut microbiota. ISMEJ. 2014; 8: 1323-1335.
DOI:1038/ismej.2014.14
Flint HJ, Duncan SH, Scott KP, & Louis P. Links between diet, gut microbiota composition and gut Proc.Nutr.Soc. 2015; 74:13-22.
DOI: 10.1017/s0029665114001463
Machiels K, & et al. Adecrease of the butyrate-producing species Roseburiahominis and Faecali bacterium prausnitzii defines dysbiosis in patients with Gut. 2014; 63:1275-1283. DOI: 10.1136/gutjnl-2013-304833.
Nedjadi T, Moran, AW, Al-Rammahi MA & Shirazi-Beechey SP. Characterization of butyrate transport across the luminal membranes of equine large intestine. Exp Physiol. 2014; 99(10): 1335-1347.
Boets E, Deroover L, Houben E, Vermeulen K, Gomand SV, Delcour JA & Verbeke K. Quantification of in vivo colonic short chain fatty acid production from inulin. Nutrients. 2015; 7(11): 8916-8929.
Macfarlane GT & Macfarlane S. Bacteria,colonic fermentation and gastro intestinal health. AOACInt. 2012; 95: 50-60.
Jung TH, Park JH, Jeon WM & Han KS. Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretionand MAPK signaling pathway. Res.Pract. 2015; 9: 343-349. DOI: 10.4162/nrp.2015.9.4.343
Den Besten G & et al. Short-chain fatty acids protect against high-fatdiet-induced obesity via a PPAR gamma-Dependent Switch from lipogenesist of at oxidation. 2015; 64: 2398-2408. DOI: 10.2337/db14-1213
Canfora EE., Jocken JW. & Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Rev.Endocrinol. 2015, 11: 577-591.
DOI: 10.1038/nrendo.2015.128.
Keku TO, Dulal S, Deveaux A, Jovov, B & Han X. The gastro intestinal microbiota and colorectal cancer. J. Physiol. Gastrointest. LiverPhysiol. 2015, 308: G351-G363.
DOI: 10.1152/ajpgi.00360.2012
Simon GM, Cheng J & Gordon JI. Quantitative assessment of the impact of the gut microbiota on lysine -acetylation of host proteins using gnotobiotic mice. Proceedings of the National Academy of Sciences. 2012; 109(28): 11133-11138.
Xie Z & et al. Metabolic Regulation of Gene Expression by Histone Lysine β-Hydroxybutyrylation. Molecular Cell. 2016; 62(2): 194-206.
Fellows R & et al. Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nature Communications. 2018; 9(1): 105.
Wang G & et al. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. Journal of cellular physiology. 2019. DOI:1002/jcp.28436.
Han A, Bennett N, Macdonald A, Johnstone M, Whelan J & Donohoe DR. Cellular metabolism and dose reveal carnitine‐dependent and ‐independent mechanisms of butyrate oxidation in colorectal cancer cells. Journal of Cellular Physiology. 2016; 231: 1804-1813.
Koh A, De VF, Kovatcheva‐Datchary P & Bckhed F. From dietary fiber to host physiology: Short‐chain fatty acids as key bacterial metabolites. Cell. 2016; 165:
1332-1345.
Zheng L & et al. Microbial-Derived Butyrate Promotes Epithelial Barrier Function through IL-10 Receptor–Dependent Repression of Claudin-2. The Journal of Immunology. 2017; 199(8): 2976-2984. DOI:4049/jimmunol.1700105
Binoy Shivanna, Ch Ch & Bhagavatula M. The Aryl Hydrocarbon Receptor (AHR): A Novel Therapeutic Target for Pulmonary Diseases? J. Mol. Sci. 2022; 23: 1516.
DOI: https://doi.org/1 0.3390/ijms23031516
Agus A, Planchais J & Sokol H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe. 2018; 23: 716-724.
Gutierrez-Vazquez C & Quintana FJ. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity. 2018; 48(1): 19-33.
Roager HM & Licht TR. Microbial tryptophan catabolites in health and disease. Commun. 2018; 9: 3294.
Korecka A & et al. Bidirectional communication between the Aryl hydrocarbon Receptor (AhR) and the microbiome tunes host metabolism. NPJ Biofilms Microbiomes. 2016; 2: 16014.
Cibrian D & et al. CD69 controls the uptake of L-tryptophan through LAT1-CD98 and AhR-dependent secretion of IL-22 in psoriasis. Immunol. 2016; 17: 985-996.
Vyhlídalová B & et al. Gut Microbial Catabolites of Tryptophan Are Ligands and Agonists of the Aryl Hydrocarbon Receptor: A Detailed Characterization. J. Mol. Sci. 2020; 21: 2614.
Zhang M & et al. The Chinese medicinal herb decoction QRZSLXF enhances anti-inflammatory e_ect in TNBS-induced colitis via balancing Th17/Tregs J. Ethnopharmacol. 2020; 251: 112549.
Jin UH & et al. Short Chain Fatty Acids Enhance Aryl Hydrocarbon (Ah) Responsiveness in Mouse Colonocytes and Caco-2 Human Colon Cancer Cells. Rep. 2017; 7: 10163.
Piper CJM & et al. Aryl Hydrocarbon Receptor Contributes to the Transcriptional Program of IL-10 Producing Regulatory B Cells. Cell Rep. 2019; 29: 1878-1892.e7.
Manzella CR & et al. Serotonin Modulates AhR Activation by Interfering with CYP1A1-Mediated Clearance of AhR Ligands. Cell Physiol. Biochem. 2020; 54: 126-141.
Obata Y & et al. Neuronal programming by microbiota regulates intestinal physiology. Nature, 2020; 578: 284-289.
Zapletal O & et al. Butyrate alters expression of cytochrome P450 1A1 and metabolism of benzoapyrene via its histone deacetylase activity in colon epithelial cell models. Toxicol. 2017; 91: 2135-2150.
Rosser EC & et al. Microbiota-DerivedMetabolites SuppressArthritis byAmplifyingAryl-Hydrocarbon Receptor Activation in Regulatory B Cells. CellMetab. 2020; 31:
837-851.e10.
Wang J & et al. Aryl hydrocarbon receptor/IL-22/Stat3 signaling pathway is involved in the modulation of intestinal mucosa antimicrobial molecules by commensal microbiota in mice. Innate Immun. 2018; 24: 297-306.
Collins SL & Patterson AD. The gut microbiome: an orchestrator of xenobiotic metabolism. Acta Pharmaceutica Sinica B. 2020; 10(1): 19e32.
Un-Ho Jin & et al. Short Chain Fatty Acids Enhance Aryl Hydrocarbon (Ah) Responsiveness in Mouse Colonocytes and Caco-2 Human Colon Cancer Cells. ScienTiFic REPortS. 2017; 7: 10163. DOI: 1038/s41598-017-10824-x
Jin UH & et al. Microbiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities. Pharmacol. 2014; 85: 777-788.
Cheng Y & et al. Editor’s Highlight: Microbial-Derived 1,4-Dihydroxy-2-naphthoic Acid and Related Compounds as Aryl Hydrocarbon Receptor Agonists/Antagonists: Structure-Activity Relationships and Receptor Modeling. Sci. 2017; 155: 458-473.
Metidji A & et al. The environmental sensor Ahr protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity. Immunity. 2018; 49(2): 353-362 e355.
_||_
Zheng P, Li Zh & Zhou Zh. Gut microbiome in type 1 diabetes: A comprehensive review. Diabetes Metab Res Rev. 2018; 34: e3043. DOI:org/10.1002/dmrr.3043
Poppe J, Baarle L, Matteoli G & Verbeke K. How microbial food fermentation supports a tolerant gut. Molecular Nutrition & Food Research. 2020. DOI: 1002/mnfr.202000036
Mayer EA, Savidge T & Shulman RJ. Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology. 2014; 146:1500-12.
DOI: 1053/j.gastro.2014.02.037
Macfarlane, GT & Macfarlane, S. Bacteria,colonic fermentation and gastro intestinal health. AOAC Int. 2012; 95: 50-60.
Xu W, Zhou Y & Hang X, Shen D. Current evidence on the relationship between CYP1B1 polymorphisms and lung cancer risk: a metaanalysis. Mol Biol Rep. 2012; 39(3): 2821-9.
Beyerle J, Frei E, Stiborov M, Habermann N & Ulrich CM. Biotransformation of xenobiotics in the human colon and rectum and its association with colorectal cancer. Drug Metab Rev; 2015; 47: 199-221.
Gutierrez-Vazquez C & Quintana FJ. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity. 2018; 48(1): 19-33.
Donaldson GP, Lee SM & Mazmanian SK. Gut biogeography of the bacterial microbiota. Nature reviews. Microbiology. 2016; 14(1): 20-32.
Li H & et al. The outer mucus layer hosts a distinct intestinal microbial niche. Nature Communications. 2015; 6(1): 8292.
Franzosa EA & et al. Identifying personal microbiomes using metagenomic codes. Proceedings of the National Academy of Sciences of the United States of America. 2015; 112(22): 2930-8.
Costea PI & et al. Enterotypes in the landscape of gut microbial community composition. Nature Microbiology. 2017; 3(1): 8-16.
Ha CW, Lam YY & Holmes AJ. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health. World Journal of Gastroenterology. 2014; 20(44): 16498-16517.
Marinelli L, Martin-Gallausiaux C, Bourhis J-M, B_eguet-Crespel F, Blotti_ere HM & Lapaque N. Identification of the novel role of butyrate as Ahr ligand in human intestinal epithelial cells. Sci Rep. 2019; 9(1): 643.
Van der Beek CM & et al. Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clin Sci (Lond). 2016; 130(22): 2073-2082. DOI:1042/CS20160263
Louis P, Hold G & Flint HJ.The gut microbiota, bacterial metabolites and colorectal cancer. Rev.Microbiol. 2014; 12: 661-672. DOI: 10.1038/nrmicro3344
Reichardt N & et al. Phylogenetic distribution of three pathways forpropionate production within the human gut microbiota. ISMEJ. 2014; 8: 1323-1335.
DOI:1038/ismej.2014.14
Flint HJ, Duncan SH, Scott KP, & Louis P. Links between diet, gut microbiota composition and gut Proc.Nutr.Soc. 2015; 74:13-22.
DOI: 10.1017/s0029665114001463
Machiels K, & et al. Adecrease of the butyrate-producing species Roseburiahominis and Faecali bacterium prausnitzii defines dysbiosis in patients with Gut. 2014; 63:1275-1283. DOI: 10.1136/gutjnl-2013-304833.
Nedjadi T, Moran, AW, Al-Rammahi MA & Shirazi-Beechey SP. Characterization of butyrate transport across the luminal membranes of equine large intestine. Exp Physiol. 2014; 99(10): 1335-1347.
Boets E, Deroover L, Houben E, Vermeulen K, Gomand SV, Delcour JA & Verbeke K. Quantification of in vivo colonic short chain fatty acid production from inulin. Nutrients. 2015; 7(11): 8916-8929.
Macfarlane GT & Macfarlane S. Bacteria,colonic fermentation and gastro intestinal health. AOACInt. 2012; 95: 50-60.
Jung TH, Park JH, Jeon WM & Han KS. Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretionand MAPK signaling pathway. Res.Pract. 2015; 9: 343-349. DOI: 10.4162/nrp.2015.9.4.343
Den Besten G & et al. Short-chain fatty acids protect against high-fatdiet-induced obesity via a PPAR gamma-Dependent Switch from lipogenesist of at oxidation. 2015; 64: 2398-2408. DOI: 10.2337/db14-1213
Canfora EE., Jocken JW. & Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Rev.Endocrinol. 2015, 11: 577-591.
DOI: 10.1038/nrendo.2015.128.
Keku TO, Dulal S, Deveaux A, Jovov, B & Han X. The gastro intestinal microbiota and colorectal cancer. J. Physiol. Gastrointest. LiverPhysiol. 2015, 308: G351-G363.
DOI: 10.1152/ajpgi.00360.2012
Simon GM, Cheng J & Gordon JI. Quantitative assessment of the impact of the gut microbiota on lysine -acetylation of host proteins using gnotobiotic mice. Proceedings of the National Academy of Sciences. 2012; 109(28): 11133-11138.
Xie Z & et al. Metabolic Regulation of Gene Expression by Histone Lysine β-Hydroxybutyrylation. Molecular Cell. 2016; 62(2): 194-206.
Fellows R & et al. Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nature Communications. 2018; 9(1): 105.
Wang G & et al. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. Journal of cellular physiology. 2019. DOI:1002/jcp.28436.
Han A, Bennett N, Macdonald A, Johnstone M, Whelan J & Donohoe DR. Cellular metabolism and dose reveal carnitine‐dependent and ‐independent mechanisms of butyrate oxidation in colorectal cancer cells. Journal of Cellular Physiology. 2016; 231: 1804-1813.
Koh A, De VF, Kovatcheva‐Datchary P & Bckhed F. From dietary fiber to host physiology: Short‐chain fatty acids as key bacterial metabolites. Cell. 2016; 165:
1332-1345.
Zheng L & et al. Microbial-Derived Butyrate Promotes Epithelial Barrier Function through IL-10 Receptor–Dependent Repression of Claudin-2. The Journal of Immunology. 2017; 199(8): 2976-2984. DOI:4049/jimmunol.1700105
Binoy Shivanna, Ch Ch & Bhagavatula M. The Aryl Hydrocarbon Receptor (AHR): A Novel Therapeutic Target for Pulmonary Diseases? J. Mol. Sci. 2022; 23: 1516.
DOI: https://doi.org/1 0.3390/ijms23031516
Agus A, Planchais J & Sokol H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe. 2018; 23: 716-724.
Gutierrez-Vazquez C & Quintana FJ. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity. 2018; 48(1): 19-33.
Roager HM & Licht TR. Microbial tryptophan catabolites in health and disease. Commun. 2018; 9: 3294.
Korecka A & et al. Bidirectional communication between the Aryl hydrocarbon Receptor (AhR) and the microbiome tunes host metabolism. NPJ Biofilms Microbiomes. 2016; 2: 16014.
Cibrian D & et al. CD69 controls the uptake of L-tryptophan through LAT1-CD98 and AhR-dependent secretion of IL-22 in psoriasis. Immunol. 2016; 17: 985-996.
Vyhlídalová B & et al. Gut Microbial Catabolites of Tryptophan Are Ligands and Agonists of the Aryl Hydrocarbon Receptor: A Detailed Characterization. J. Mol. Sci. 2020; 21: 2614.
Zhang M & et al. The Chinese medicinal herb decoction QRZSLXF enhances anti-inflammatory e_ect in TNBS-induced colitis via balancing Th17/Tregs J. Ethnopharmacol. 2020; 251: 112549.
Jin UH & et al. Short Chain Fatty Acids Enhance Aryl Hydrocarbon (Ah) Responsiveness in Mouse Colonocytes and Caco-2 Human Colon Cancer Cells. Rep. 2017; 7: 10163.
Piper CJM & et al. Aryl Hydrocarbon Receptor Contributes to the Transcriptional Program of IL-10 Producing Regulatory B Cells. Cell Rep. 2019; 29: 1878-1892.e7.
Manzella CR & et al. Serotonin Modulates AhR Activation by Interfering with CYP1A1-Mediated Clearance of AhR Ligands. Cell Physiol. Biochem. 2020; 54: 126-141.
Obata Y & et al. Neuronal programming by microbiota regulates intestinal physiology. Nature, 2020; 578: 284-289.
Zapletal O & et al. Butyrate alters expression of cytochrome P450 1A1 and metabolism of benzoapyrene via its histone deacetylase activity in colon epithelial cell models. Toxicol. 2017; 91: 2135-2150.
Rosser EC & et al. Microbiota-DerivedMetabolites SuppressArthritis byAmplifyingAryl-Hydrocarbon Receptor Activation in Regulatory B Cells. CellMetab. 2020; 31:
837-851.e10.
Wang J & et al. Aryl hydrocarbon receptor/IL-22/Stat3 signaling pathway is involved in the modulation of intestinal mucosa antimicrobial molecules by commensal microbiota in mice. Innate Immun. 2018; 24: 297-306.
Collins SL & Patterson AD. The gut microbiome: an orchestrator of xenobiotic metabolism. Acta Pharmaceutica Sinica B. 2020; 10(1): 19e32.
Un-Ho Jin & et al. Short Chain Fatty Acids Enhance Aryl Hydrocarbon (Ah) Responsiveness in Mouse Colonocytes and Caco-2 Human Colon Cancer Cells. ScienTiFic REPortS. 2017; 7: 10163. DOI: 1038/s41598-017-10824-x
Jin UH & et al. Microbiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities. Pharmacol. 2014; 85: 777-788.
Cheng Y & et al. Editor’s Highlight: Microbial-Derived 1,4-Dihydroxy-2-naphthoic Acid and Related Compounds as Aryl Hydrocarbon Receptor Agonists/Antagonists: Structure-Activity Relationships and Receptor Modeling. Sci. 2017; 155: 458-473.
Metidji A & et al. The environmental sensor Ahr protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity. Immunity. 2018; 49(2): 353-362 e355.