نانوذرات پروتئینی بهعنوان حاملهای دارورسانی در درمان سرطان
محورهای موضوعی : نانوبیوتکنولوژی
1 - 1- دانشجوی دکتری ریززیست فناوری، گروه ریززیست فناوری، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران
کلید واژه: دارورسانی, سرطان, نانوذرات پروتئینی, نانوبیوتکنولوژی.,
چکیده مقاله :
سرطان همچنان یکی از کشندهترین بیماریها در سراسر جهان محسوب میشود و علیرغم اینکه محققین، بسیاری از رویدادهای پیچیدهای که منجر به بروز سرطان و متاستاز میشوند را مورد بررسی قرار دادهاند و در این زمینه پیشرفت خوبی داشتهاند، با این حال هنوز درمان موثری برای سرطان وجود ندارد. یکی از چالشهای اساسی در درمان سرطان، آزاد شدن دارو در جریان خون و نرسیدن دوز موثر دارو به بافت سرطانی است که سبب میشود بیماران دوز بالاتری از دارو را استفاده و به طور مکرر دارو مصرف کنند که منجر به ایجاد مقاومتهای دارویی میشود لذا برای درمان موثر سرطان، باید از سیستمهای دارورسانی استفاده شود که بتوانند دوز موثر دارو را به بافت مدنظر برسانند و بر محدودیت فوق فائق آیند. محققین با قصد انتقال هدفمند دوز موثر دارو از علم نانو و نانوساختارهای متنوع کمک گرفتهاند. در این میان نانوذرات پروتئینی یکی از نانوساختارهایی محسوب میشوند که به دلیل فراوانی در منابع طبیعی، زیست سازگاری، زیست تخریب پذیری، فرآیند سنتز آسان، عدم سمیت بالقوه و امکان اصلاح سطح، میتوانند جایگزین خوبی برای بهبود خواص فارماکوکینتیک و فارماکودینامیک انواع مختلف مولکولهای دارو و درمان امیدوارکنندهای برای انواع مختلف بیماریها و از جمله سرطان باشند.
Cancer is still one of the deadliest diseases worldwide. Although researchers have studied many of the complex processes that lead to cancer and metastasis and have made good progress in this field, there is still no effective treatment for cancer. One of the biggest challenges in cancer treatment is the release of drugs into the bloodstream and the fact that the effective dose of the drug does not reach the cancerous tissue, causing patients to use a higher dose of the drug and take the drug repeatedly, leading to the development of drug resistance. Therefore, for effective treatment of cancer, drug delivery systems that can deliver the effective dose of the drug to the target tissue and overcome the above limitations must be used. Researchers have enlisted the help of nanoscience and various nanostructures to target and deliver an effective dose of the drug. Meanwhile, protein nanoparticles are one of the nanostructures that can be a good alternative for improving the pharmacokinetic and pharmacodynamic properties of various types of drug molecules, as they are abundant in natural sources, biocompatible, and biodegradable, easily synthesized, potentially non-toxic, and surface modifiable. and be a promising treatment for various types of diseases, including cancer.
1-COOPER J. 1 What is Cancer?. Occupational therapy in oncology and palliative care. 2006 May 1:1.
2- Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: a cancer journal for clinicians. 2011 Mar;61(2):69-90.
3- Lettieri-Barbato D, Aquilano K. Pushing the limits of cancer therapy: the nutrient game. Frontiers in oncology. 2018 May 8;8:148.
4- Wang Z, Hu T, Liang R, Wei M. Application of zero-dimensional nanomaterials in biosensing. Frontiers in chemistry. 2020 Apr 17;8:320.
5- Paras, Yadav K, Kumar P, Teja DR, Chakraborty S, Chakraborty M, Mohapatra SS, Sahoo A, Chou MM, Liang CT, Hang DR. A review on low-dimensional nanomaterials: nanofabrication, characterization and applications. Nanomaterials. 2022 Dec 29;13(1):160.
6- Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, Cano A, Espina M, Ettcheto M, Camins A, Silva AM. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials. 2020 Feb 9;10(2):292.
7- Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of drug delivery science and technology. 2019 Oct 1;53:101174.
8- Jain A, Singh SK, Arya SK, Kundu SC, Kapoor S. Protein nanoparticles: promising platforms for drug delivery applications. ACS Biomaterials Science & Engineering. 2018 Nov 2;4(12):3939-61.
9- Yasmin R, Shah M, Khan SA, Ali R. Gelatin nanoparticles: A potential candidate for medical applications. Nanotechnology Reviews. 2017 Apr 1;6(2):191-207.
10- Cardoso VS, de Carvalho Filgueiras M, Dutra YM, Teles RH, de Araújo AR, Primo FL, Mafud AC, Batista LF, Mascarenhas YP, Paino IM, Zucolotto V. Collagen-based silver nanoparticles: Study on cell viability, skin permeation, and swelling inhibition. Materials Science and Engineering: C. 2017 May 1;74:382-8.
11- Sahithi B, Ansari S, Hameeda S, Sahithya G, Prasad D.M, Lakshmi Y. A. review on collagen based drug delivery systems. Indian J. Res. Pharm.Biotechnol. 2013. 1; 461.
12- Hong S, Choi DW, Kim HN, Park CG, Lee W, Park HH. Protein-based nanoparticles as drug delivery systems. Pharmaceutics. 2020 Jul;12(7):604.
13- Mithieux SM, Weiss AS. Elastin. Advances in protein chemistry. 2005 Jan 1;70:437-61.
14- Saindane NS, Pagar KP, Vavia PR. Nanosuspension based in situ gelling nasal spray of carvedilol: development, in vitro and in vivo characterization. Aaps Pharmscitech. 2013 Mar;14:189-99.
15- Mukherjee S, Dasari M, Priyamvada S, Kotcherlakota R, Bollu VS, Patra CR. A green chemistry approach for the synthesis of gold nanoconjugates that induce the inhibition of cancer cell proliferation through induction of oxidative stress and their in vivo toxicity study. Journal of Materials Chemistry B. 2015;3(18):3820-30.
16- Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, Hwang HM, Toropov A, Leszczynska D, Leszczynski J. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nature nanotechnology. 2011 Mar;6(3):175-8.
17- Pham DT, Tiyaboonchai W. Fibroin nanoparticles: A promising drug delivery system. Drug delivery. 2020 Jan 1;27(1):431-48.
18- Seo SJ, Das G, Shin HS, Patra JK. Silk sericin protein materials: characteristics and applications in food-sector industries. International Journal of Molecular Sciences. 2023 Mar 3;24(5):4951.
19- Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E. The antioxidant properties of serum albumin. FEBS letters. 2008 Jun 11;582(13):1783-7.
20- Wani TA, Bakheit AH, Al-Majed AR, Bhat MA, Zargar S. Study of the interactions of bovine serum albumin with the new anti-inflammatory agent 4-(1, 3-Dioxo-1, 3-dihydro-2 H-isoindol-2-yl)-N′-[(4-ethoxy-phenyl) methylidene] benzohydrazide using a multi-spectroscopic approach and molecular docking. Molecules. 2017 Jul 27;22(8):1258.
21- Huntington JA, Stein PE. Structure and properties of ovalbumin. Journal of Chromatography B: Biomedical Sciences and Applications. 2001 May 25;756(1-2):189-98.
22- Cho YoungHee CY, Jones OG. Assembled protein nanoparticles in food or nutrition applications.
23- Bragulla HH, Homberger DG. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. Journal of anatomy. 2009 Apr;214(4):516-59.
24- Martínez-López AL, Pangua C, Reboredo C, Campión R, Morales-Gracia J, Irache JM. Protein-based nanoparticles for drug delivery purposes. International journal of pharmaceutics. 2020 May 15;581:119289.
25-Aljohani MA, Jimack PK, Walkley MA. A faster optimal solver for thin film flows. Applied Numerical Mathematics. 2023 Feb 1;184:357-70.
26-Peltonen L, Valo H, Kolakovic R, Laaksonen T, Hirvonen J. Electrospraying, spray drying and related techniques for production and formulation of drug nanoparticles. Expert opinion on drug delivery. 2010 Jun 1;7(6):705-19.
27-Ravera F, Dziza K, Santini E, Cristofolini L, Liggieri L. Emulsification and emulsion stability: The role of the interfacial properties. Advances in Colloid and Interface Science. 2021 Feb 1;288:102344.
28-Karuppusamy C, Venkatesan P. Role of nanoparticles in drug delivery system: a comprehensive review. Journal of Pharmaceutical sciences and Research. 2017 Mar 1;9(3):318.
29-Fessi HP, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. International journal of pharmaceutics. 1989 Oct 1;55(1):R1-4.
30-Tarhini M, Greige-Gerges H, Elaissari A. Protein-based nanoparticles: From preparation to encapsulation of active molecules. International journal of pharmaceutics. 2017 Apr 30;522(1-2):172-97.
31-Weber C, Coester C, Kreuter J, Langer K. Desolvation process and surface characterisation of protein nanoparticles. International journal of pharmaceutics. 2000 Jan 20;194(1):91-102.
32-Yan C, Zhang W. Coacervation processes. InMicroencapsulation in the food industry 2014 Jan 1 (pp. 125-137). Academic Press.
33-Azizi ZL, Daneshjou S. Bacterial nano-factories as a tool for the biosynthesis of TiO2 nanoparticles: Characterization and potential application in wastewater treatment. Applied Biochemistry and Biotechnology. 2024 Jan 4:1-25.
34-Penner MH. Basic principles of spectroscopy. Food analysis. 2017:79-88.
35- Vijayaram S, Razafindralambo H, Sun YZ, Vasantharaj S, Ghafarifarsani H, Hoseinifar SH, Raeeszadeh M. Applications of green synthesized metal nanoparticles—a review. Biological Trace Element Research. 2024 Jan;202(1):360-86.
36-Goldburg WI. Dynamic light scattering. American Journal of Physics. 1999 Dec 1;67(12):1152-60.
37- Attia M.F, Anton N, Wallyn J, Omran Z, Vandamme T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019. 71(8), 1185-1198. doi:10.1111/jphp.13098.
38- Torchilin VP. Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol. 2010;(197):3-53. doi: 10.1007/978-3-642-00477-3_1. PMID: 20217525.
39- Lin T, Zhao P, Jiang Y, Tang Y, Jin H, Pan Z, Huang Y. Blood–brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS nano. 2016 10(11), 9999-10012.
40-Lunardi C. N, Bonilha J. B. S, Tedesco A .C. Stern–Volmer quenching and binding constants of 10-alkyl-9(10H)-acridone probes in SDS and BSA. Journal of Luminescence. 2002. 99(1), 61-71. doi:https://doi.org/10.1016/S0022- 2313(02)00227-2.
41- Giridhar Reddy S, Thakur A. Drug Entrapment Efficiency of Silver Nanocomposite Hydrogel. IOP Conf. Ser.: Mater. Sci. Eng. 2019. 577012176.
42- Omolo CA, Hassan D, Devnarain N, Jaglal Y, Mocktar C, Kalhapure RS, Jadhav M, Govender T. Formulation of pH .responsive multilamellar vesicles for targeted delivery of hydrophilic antibiotics. Colloids and Surfaces B: Biointerfaces. 2021 Nov 1;207:112043.
43- Gregory JV, Kadiyala P, Doherty R, Cadena M, Habeel S, Ruoslahti E, Lowenstein PR, Castro MG, Lahann J. Systemic brain tumor delivery of synthetic protein nanoparticles for glioblastoma therapy. Nature communications. 2020 Nov 10;11(1):5687.
44- Bari E, Serra M, Paolillo M, Bernardi E, Tengattini S, Piccinini F, Lanni C, Sorlini M, Bisbano G, Calleri E, Torre ML. Silk fibroin nanoparticle functionalization with Arg-Gly-Asp cyclopentapeptide promotes active targeting for tumor site-specific delivery. Cancers. 2021 Mar 9;13(5):1185.
45- Esim O, Gedik ME, Dogan AL, Gunaydin G, Hascicek C. Development of carboplatin loaded bovine serum albumin nanoparticles and evaluation of its effect on an ovarian cancer cell line. Journal of Drug Delivery Science and Technology. 2021 Aug 1;64:102655.
46- Esim O, Oztuna A, Sarper M, Hascicek C. Chitosan-coated bovine serum albumin nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics. Journal of Drug Delivery Science and Technology. 2022 Nov 1;77:103906.
47- Voci S, Gagliardi A, Ambrosio N, Salvatici MC, Fresta M, Cosco D. Gliadin nanoparticles containing doxorubicin hydrochloride: characterization and cytotoxicity. Pharmaceutics. 2023 Jan 4;15(1):180.
48- Yu X, Wu H, Hu H, Dong Z, Dang Y, Qi Q, Wang Y, Du S, Lu Y. Zein nanoparticles as nontoxic delivery system for maytansine in the treatment of non-small cell lung cancer. Drug delivery. 2020 Jan 1;27(1):100-9.
49- Barick KC, Tripathi A, Dutta B, Shelar SB, Hassan PA. Curcumin encapsulated casein nanoparticles: Enhanced bioavailability and anticancer efficacy. Journal of Pharmaceutical Sciences. 2021 May 1;110(5):2114-20.
50- Selimovic A, Kara G, Denkbas EB. Magnetic gelatin nanoparticles as a biocompatible carrier system for small interfering RNA in human colorectal cancer: Synthesis, optimization, characterization, and cell viability studies. Materials Today Communications. 2022 Dec 1;33:104616.