همبستگی شاخصهای تکنولوژی با ارتقاء بهرهوری و کاهش مصرف انرژی در مسکنهای اقلیمی
محورهای موضوعی : معمار شهرزهرا مهربان سهگنبد 1 , مهرداد جاویدنژاد 2 , سعید تیزقلم زنوزی 3
1 -
2 - گروه معماری، واحد تهران مرکز، دانشگاه آزاد اسلامی، تهران، ایران
3 - استادیار گروه معماری، دانشگاه آزاد اسلامی
کلید واژه: تکنولوژی, ارتقا بهره وری, کاهش مصرف انرژی, مسکنهای اقلیمی ,
چکیده مقاله :
هدف اصلی بکارگیری این مسکنها کاهش مصرف انرژی و افزایش آسایش و سطح کارایی آن میباشد. اما نکته حائز اهمیت، دانش و تکنولوژی بهره برداری و نگهداری این سیستم در مسکنهای اقلیمی است. با توجه به این که هزینه ها و مسائل مالی تنها یکی از عوامل موثر بر تصمیمگیری بکارگیری سیستمهای مدیریت و کنترل هوشمند ساختمان میباشد، لزوم شناسایی عوامل و پیشرانههای دیگر نیز برای تصمیمگیری در این زمینه امری بدیهی است. این در حالی است که مطالعات کمتری به درك و شناخت عوامل و معیارهای کارایی سیستم مدیریت ساختمان در رابطه با توسعه یک مدل ارزیابی کامل و جامع پرداختهاند. در این راستا هدف اصلی تحقیق حاضر همبستگی شاخص های تکنولوژی در ارتقا بهرهوری و کاهش مصرف انرژی در خانه های مسکونی است. تحقیق حاظر از نظر هدف کاربردی، از نظر روش انجام پژوهش توصیفی پیمایشی مبتنی بر داده های آمیخته (کمی-کیفی) می باشد. تجزیه و تحلیل دادهها در این پژوهش دارای دو بخش بوده است که در بخش اول به اولویت بندی و صحت سنجی شاخص ها توسط افراد متخصص و خبره پرداخته می شود که در این بخش از مدل دلفی فازی برای صحت سنجی و تاپسیس برای الویت بندی استفاده شد و نهایتا برای بررسی رابطه بین متغیر ها و تبیین مدل از رگرسیون چندگانه استفاده شد. نتایج تاپسیس نشان میدهد که هوشمندسازی انرژی گرمایشی و سرمایشی دارای اولویت اول، هوشمندسازی کیفیت هوای داخل ساختمان رتبه دوم و هوشمندسازی مصرف انرژی روشنایی دارای اولویت سوم میباشد. دادهﻫﺎي ﺿﺮﯾﺐ ﻫﻤﺒﺴﺘﮕﯽ ﭼﻨﺪﮔﺎﻧﻪ 815/0 است و ﺿﺮﯾﺐ ﺗﻌﯿﯿﻦ اﺻﻼح ﺷﺪه ﺑﻪ دﺳﺖ آﻣﺪه ﺑﺮاﺑﺮ ﺑﺎ 815/0 است و اﯾﻦ ﻣﻘﺪار ﻧﺸﺎن ﻣﯽدﻫﺪ که 4/81 درﺻﺪ ﺗﻐﯿﯿﺮات مصرف انرژی کل از طریق شاخص های تکنولوژی قابل ﭘﯿﺶ ﺑﯿﻨﯽ اﺳﺖ. ﺑﺮ اﺳﺎس دادهﻫﺎ ﻣﻘـﺪار F محاسبه ﺷـﺪه 383/588 ﺑﺰرﮔﺘـﺮ از ﻣﻘـﺪار ﺑﺤﺮاﻧﯽ F می باشد؛ در ﻧﺘﯿﺠﻪ ﺑﺎ اﻃﻤﯿﻨﺎن 99 درﺻﺪ ﻣﯽ ﺗﻮان ﮔﻔـﺖ شاخص های تکنولوژی و مصرف انرژی کل رابطه معناداری وجود دارد.
The main purpose of using these housings is to reduce energy consumption and increase comfort and efficiency. But the important point is the knowledge and technology of operating and maintaining this system in climate housing. Due to the fact that costs and financial issues are only one of the factors influencing the decision to use intelligent building management and control systems, the need to identify other factors and drivers for decision-making in this field is obvious. Meanwhile, fewer studies have addressed the understanding and recognition of the factors and efficiency criteria of the building management system in relation to the development of a complete and comprehensive evaluation model. In this regard, the main goal of the current research is the correlation of technology indicators in improving productivity and reducing energy consumption in residential houses. The current research is based on mixed (quantitative-qualitative) data in terms of applied purpose, in terms of descriptive survey research method. The data analysis in this research has two parts, in the first part, the prioritization and verification of indicators by experts and experts are discussed, in this part, the fuzzy Delphi model was used for verification and TOPSIS for prioritization. And finally, multiple regression was used to examine the relationship between variables and explain the model. The results of TOPSIS show that the intelligentization of heating and cooling energy has the first priority, the intelligentization of indoor air quality has the second rank, and the intelligentization of lighting energy consumption has the third priority. The data of the multiple correlation coefficient is 0.815 and the corrected coefficient of determination obtained is equal to 0.815 and this value shows that 81.4 percent of the changes in total energy consumption can be predicted through technology indicators. Based on the data, the calculated value of F is 588/383 greater than the critical value of F; As a result, with 99 percent certainty, it can be said that there is a significant relationship between technology indicators and total energy consumption.
• حقانی، مهسا و مجیدی هتکه لویی، سحر،(1399)،چارچوب طراحی معماری ساختمان های صفر انرژی؛ با تمرکز بر سلول های فتوولتائیک،دومین کنفرانس ملی مدیریت شهری،شهرسازی و معماری،تبریز.
• شهابی، نسیبه و نوروزی، ملیحه،(1399)،بررسی تطبیقی ساختمان های صفر انرژی،هفتمین کنفرانس ملی پژوهش های کاربردی در مهندسی عمران، معماری و مدیریت شهری و ششمین نمایشگـاه تخصصی انبوه سازان مسکن و ساختمان استان تهران،تهران.
• وریج کاظمی، محمد و وریج کاظمی، رضا و رحیمی کیارمشی، محمدحسن، (1392)، بررسی و تحلیل ممیزی انرژی ساختمان و قوانین موجود در ایران،اولین همایش ملی ساختمان آینده،ساری.
• محمدی، ایمان و سیاه مشته ای، شقایق،(1399)،بهینه سازی مصرف انرژی در ساختمان های صفر انرژی،اولین کنفرانس محیط زیست، عمران، معماری و شهرسازی،تهران.
• هوشیاریزدیان، سیده هما و سمیعی منش، فرشاد،(1399)،واکاوی ساختمان های صفر انرژی با رویکرد معماری پایدار،ششمین کنفرانس بین المللی عمران، معماری و شهرسازی،تهران.
• D’Agostino, D. (2015). Assessment of the progress towards the establishment of definitions of Nearly Zero Energy Buildings (nZEBs) in European Member States. J. Build. Eng, 1, 20-32.
• da Graça, G. C., Augusto, A., & Lerer, M. M. (2012). Solar powered net zero energy houses for southern Europe: Feasibility study. Solar Energy, 86(1), 634-646.
• Hannan, M. A., Faisal, M., Ker, P. J., Mun, L. H., Parvin, K., Mahlia, T. M. I., & Blaabjerg, F. (2018). A review of internet of energy based building energy management systems: Issues and recommendations. Ieee Access, 6, 38997-39014.
• Kwan, Y., & Guan, L. (2015). Design a zero energy house in Brisbane, Australia. Procedia Engineering, 121, 604-611.
• Saberbari, E., & Saboori, H. (2014, May). Net-zero energy building implementation through a grid-connected home energy management system. In 2014 19th Conference on Electrical Power Distribution Networks (EPDC) (pp. 35-41). IEEE.
• Tumminia, G., Guarino, F., Longo, S., Aloisio, D., Cellura, S., Sergi, F., ... & Ferraro, M. (2020). Grid interaction and environmental impact of a net zero energy building. Energy Conversion and Management, 203, 112228.
• Hoseinzadeh, S., Hadi Zakeri, M., Shirkhani, A., & Chamkha, A. J. (2019). Analysis of energy consumption improvements of a zero-energy building in a humid mountainous area. Journal of Renewable and Sustainable Energy, 11(1), 015103.
• Alirezaei, M., Noori, M., & Tatari, O. (2016). Getting to net zero energy building: Investigating the role of vehicle to home technology. Energy and Buildings, 130, 465-476.
• Chastas, P., Theodosiou, T., & Bikas, D. (2016). Embodied energy in residential buildings-towards the nearly zero energy building: A literature review. Building and environment, 105, 267-282.
• Hu, M. (2019). Does zero energy building cost more?–An empirical comparison of the construction costs for zero energy education building in United States. Sustainable cities and society, 45, 324-334.
• Sun, X., Gou, Z., & Lau, S. S. Y. (2018). Cost-effectiveness of active and passive design strategies for existing building retrofits in tropical climate: Case study of a zero energy building. Journal of Cleaner Production, 183, 35-45.
• Reda, F., & Fatima, Z. (2019). Northern European nearly zero energy building concepts for apartment buildings using integrated solar technologies and dynamic occupancy profile: Focus on Finland and other Northern European countries. Applied Energy, 237, 598-617.
• Liu, M., & Heiselberg, P. (2019). Energy flexibility of a nearly zero-energy building with weather predictive control on a convective building energy system and evaluated with different metrics. Applied Energy, 233, 764-775.
• Mehrjerdi, H., Iqbal, A., Rakhshani, E., & Torres, J. R. (2019). Daily-seasonal operation in net-zero energy building powered by hybrid renewable energies and hydrogen storage systems. Energy Conversion and Management, 201, 112156.
• Bruno, R., Bevilacqua, P., Cuconati, T., & Arcuri, N. (2019). Energy evaluations of an innovative multi-storey wooden near Zero Energy Building designed for Mediterranean areas. Applied energy, 238, 929-941.
• Danza, L., Barozzi, B., Bellazzi, A., Belussi, L., Devitofrancesco, A., Ghellere, M., ... & Scrosati, C. (2020). A weighting procedure to analyse the Indoor Environmental Quality of a Zero-Energy Building. Building and Environment, 183, 107155.