ارزیابی میکروساختاری پوششهای YSZپاشش پلاسمایی
محورهای موضوعی : عملیات حرارتیسید علی صادقی فدکی 1 , ضیاء والفی 2 , کریم زنگنه مدار 3
1 - کارشناس ارشد، دانشگاه صنعتی مالک اشتر، تهران
2 - استادیار، دانشگاه صنعتی مالک اشتر، مجتمع مواد فلزی، تهران
3 - دانشیار، دانشگاه صنعتی مالک اشتر، مجتمع مواد فلزی، تهران
کلید واژه: میکروساختار, تخلخل, ذرات پودری ذوب نشده, پاشش پلاسمایی, پوشش زیرکونیا,
چکیده مقاله :
در این تحقیق، پوششهای زیرکونیای پایدار شده با ایتریا توسط روش پاشش پلاسمای اتمسفری بر روی زیرلایهای از جنس فولاد کربنی اعمال گردید. مشخصههای میکروساختاری پوشش با استفاده از میکروسکوپ الکترونی روبشی و نیز پردازش تصویر به کمک میکروسکوپ نوری تعیین گردید. همچنبن ارتباط میان مشخصههای کمی میکروساختار پوشش YSZ با پارامترهای پاشش پلاسمایی (فاصله پاشش و نرخ تزریق پودر) مشخص گردید. نتایج حاکی از این است که با تغییر فاصله پاشش و نرخ تزریق پودر، میزان تخلخل، مورفولوژی تخلخل و درصد ذرات پودری ذوب نشده در میکروساختار تغییر مییابد. بعلاوه، نتایج نشان داد تاثیر نرخ تزریق پودر بر مشخصههای میکروساختاری نسبت به فاصله پاشش بیشتر میباشد.
[1] R. A. Miller, “Current Status of Thermal Barrier Coatings – An Overview” Surf.Coat. Tech, Vol. 30, pp. 1 11, 1987.
[2] D. Ruddell& R. Stoner, “The effect of deposition parameters on the properties of yttria-stabilized zirconia thin films”, Thin Solid Films, Vol. 445, pp. 14–19, 2003.
[3] J. F. Li& H. Liao, “Plasma spraying of nanostructured partiallyyttriastabilized zirconia powders”, Thin Solid Films, Vol. 460, pp. 101–115, 2004.
[4] M. Vardelle, A. Vardelle & P. Fauchais, “Spray parameters and particle behavior relationships during plasma spraying” Thermal Spray Technology, Vol. 2, pp. 79-91, 1993.
[5] T. C. Nerz, J. E. Nerz, B. A. Kushner, A. J. Rotolico &W. L. Riggs: in Thermal Spray: International Advances in Coatings Technology, C. C. Berndt, ed, ASM International, Materials Park, OH, pp. 405-14, 1992.
[6] T. J. Steeper, D.J. Varacalle, G.C. Wilson& W.L. Riggs, “A design of experiment study of plasma-sprayed alumina-titania coatings” Thermal Spray Technology, Vol. 2, pp. 251-256, 1993.
[7] M. Dorfman & J. DeBarro: in Thermal Spray: International Advances in Coatings Technology, C. C. Berndt, ed., ASM International, Materials Park, OH, pp. 439-46, 1992.
[8] C. Moreau, P. Gougeon, M. Lamontagne, V. Lacasse & P. Cielo: in Thermal Spray Industrial Applications, C. C. Berndt and S. Sampath ,eds.,ASM International, Materials Park, OH, pp. 431-37, 1994.
[9] M. Friis, C. Persson & J. Wigren, “Influence of particle in-flight characteristics on the microstructure of atmospheric plasma sprayed yttria stabilized ZrO2”, Surf. Coat. Technol, Vol. 141, pp. 115-127, 2001.
[10] W.D. Swank, J.R. Fincke & D.C. Haggard: in Thermal Spray Science and Technology, C.C. Berndt and S. Sampath, eds, ASM International, Materials Park, OH, pp. 111-16, 1995.
[11] R. A. Neiser & T. J. Roemer: in Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, ed, ASM International, Materials Park, OH, pp. 285-93, 1996.
[12] R. N. Wright, J. R. Fincke, W. D. Swank, & D. C. Haggard: in Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, ed., ASM International, Materials Park, OH, pp. 511-16, 1996.
[13] A. C. Leger, M. Vardelle, A. Vardelle, P. Fauchais, S. Sampath, C. C. Berndt & H. Herman: in Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, ed, ASM International, Materials Park, OH, pp. 623-28, 1996.
[14] S. Sampath, J. Matejicek, C. C. Berndt, H. Herman, A. C. Leger, M. Vardelle, A. Vardelle & P. Fauchais: in Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, ed, ASM International, Materials Park, OH, pp. 629-36, 1996.
[15] P. Gougeon & C. Moreau, “Simultaneous independent measurement of splat diameter and cooling time during impact on a substrate of plasma-sprayed molybdenum particles”, Thermal Spray Technology, Vol. 10, pp. 76-82, 2001.
[16] T. A. Taylor, “Thermal-barrier coatings for more efficient gas-turbine engines”, Surf.Coat. Tech, Vol. 54, pp. 53-57, 1992.
[17] R. McPherson, “Adhesion Measurement of Films and Coatings”, Surf.Coat. Tech, Vol. 39, pp. 173-81, 1989.
[18] H. J. Gross, W. Mallener, D. Strover & R. Vassen: in Thermal Spray Coatings: Research, Design and Applications, C.C. Berndt and T.F. Ber- necki, eds, ASM International, Materials Park, OH, pp. 581-85, 1993.
[19] D. J. Greving, E. F. Rybicki & J.R. Shadley: in Thermal Spray Industrial Applications, C.C. Berndt and S. Sampath, eds., ASM International, Materials Park, OH, pp. 647-53, 1994.
[20] P. Bengtsson, T. Johannesson, “Characterization of microstructural defectsin plasma-sprayed thermal barrier coatings”, Therm. Spray Technol, Vol. 4, pp. 245–25, 1995.
[21] J. R. Fincke, D. C. Haggard & W. D. Swank, “Particle temperature measurement in the thermal spray process”, Thermal Spray Technology, Vol. 10, pp. 255-266, 2001.
[22] C. J. Li, Y. He & Ohmori, “A. Characterization of the microstructureof thermally sprayed coating”, Proceedings of 15th ITSC. Nice, pp. 717-722, 1998.
[23] S. Kuroda, “Properties and characterization of thermal sprayed coatings-a review of recent research process”, Proceedings of 15th ITSC. Nice, pp. 539-550, 1998.
[24] R. Morrell, Handbook of Properties of Technical and Engineering Ceramics, Part 1, Her Majesty's Stationery Office, London, pp. 151–158, 1989.
[25] R.W. Trice & K.T. Faber, “Role of lamellae morphology on the microstructure and mechanical properties of plasma sprayed alumina”, Am. Ceram. Soc, Vol. 83, pp. 889–894, 2000.
[26] T. W. Clyne & S. C. Gill, “Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work” Thermal Spray Technology, Vol. 5, pp. 401-418, 1996.
[27] R. Vaßen, F. Traeger & D. St. over, “Correlation between spraying conditions and microcrack density and their influence on thermal cycling life of thermal barrier coatings”, Journal of Thermal Spray Technology, Vol. 13, pp. 396–404, 2004.
[28] D. J. Greving, E. F. Rybicki & J. R. Shadley, “Through-Thickness Residual Stress Evaluations for Several Industrial Thermal Spray Coatings Using a Modified Layer-Removal Method”, Thermal Spray Technol, Vol. 3, pp. 379-388, 1994.
[29] T. J. Steeper, D.J. Varacalle, G.C. Wilson & W.L. Riggs, “Atmospheric plasma sprayed thermal barrier coatings with high segmentation crack densities: Spraying process, microstructure and thermal cycling behavior” Surface & Coting Technology, Vol. 206, pp. 16-23, 2011.
[30] R. McPherson,” The effects of heat treatment on the phase transformation behavior of plasma-sprayed stabilized ZrO2 coatings”, Thin Solid Films, Vol. 39, pp. 173-181, 1989.
[31] J. Moon, H. Choi, H. Junkim & C. Lee,” The effects of heat treatment on the phase transformation behavior of plasma-sprayed stabilized ZrO2 coatings”, Surf. Coat. Technol, Vol. 155, pp. 1-10, 2002.
[32] J. Ilavsky & J. K. Stalick, “Phase composition and its changes during annealing of plasma-sprayed YSZ”, Surf. Coat. Technol, Vol. 127, pp. 120-129, 2000.
[33] JCPDS Data Cards, International Center of Diffraction Data, Swarthmore, PA, 1999.
[34] Afrasiabi, M. Saremi & A. Kobayashi, “Comparative Study on Hot Corrosion Resistance of Three Types of Thermal Barrier Coatings”, Mater. Sci. Eng, Vol. 478. pp. 264-269, 2008.
[35] H. Chen, Y. Zhang & Ch. Ding, “Tribological properties of nanostructured zirconia coatings deposited by plasma spraying”, Wear, Vol. 253, pp. 885-893, 2002.
[36] M. Pasandideh-Fard & V. Pershin, “Splat Shapes in a Thermal Spray Coating Process: Simulations and Experiments”, Thermal Spray Technology, Vol.11, pp. 206-217, 2001.
[37] M. Prystay & P. Gougeon, “Structure of Plasma-Sprayed Zirconia Coatings Tailored by Controlling the Temperature and Velocity of the Sprayed Particles”, Thermal Spray Technology, Vol. 10, pp. 67-75, 2001.