رفتار شوک حرارتی پوششهای سد حرارتی YSZ، /YSZ مولایت و پوشش گرادیانی /YSZ مولایت بر روی سوپر آلیاژ پایه نیکل تهیه شده با روش اسپری پلاسمایی (APS)
محورهای موضوعی : سرامیک ها و مواد نسوزنادر سلطانی 1 , ایمان مباشرپور 2 , اسماعیل صلاحی 3 , علی صداقت آهنگری 4
1 - پژوهشگاه مواد و انرژی
2 - پژوهشکده سرامیک، پژوهشگاه مواد و انرژی، کرج، ایران
3 - پژوهشگاه مواد و انرژی
4 - پژوهشگاه مواد و انرژی
کلید واژه: مولایت, سوپر آلیاژ پایه نیکل, پوشش های سد حرارتی, اسپری پلاسمایی, زیرکونیا پایدار شده با ایتریا,
چکیده مقاله :
در این پژوهش رفتار شوک حرارتی ، سه نوع پوشش سد حرارتی زیرکونیای پایدار شده با ایتریا (YSZ) ، پوشش لایهای زیرکونیای پایدار شده با ایتریا و پوشش مولایت (YSZ/Mullie) و پوشش گرادیانی از زیرکونیای پایدار شده با ایتریا و مولایت (YSZ/Mullie) بر روی سوپر آلیاژ پایه نیکل اینکونل 738 کم کربن به همراه لایه میانی پوشش داده شده با روش اسپری پلاسمایی مقایسه شد. با استفاده از میکروسکوپ الکترونی روبشی(SEM)، و پراش اشعه ایکس(XRD)، بررسی ریزساختار و آنالیز فازی انجام شد. درصد تخلخل و شوک پذیری پوششها در دمای °C1100 مورد بررسی و مقایسه قرار گرفت. نتایج نشان داد که با افزایش مولایت به صورت لایهای و گرادیانی بر روی پوشش YSZ از میزان حفرات و تخلخل ها کاسته میشود که این پدیده به علت افزایش مقادیر ذرات ذوب شده مولایت میباشد. درصد تخلخل مربوط به پوشش لایهای و گرادیانی از مولایت به ترتیب برابر با 8 و 5/3 درصد به دست آمد. با استفاده از نتایج آزمون شوک حرارتی مشخص شد طول عمر پوشش لایهای از مولایت از پوشش گرادیانی مولایت و پوششYSZ بیشتر است. بیشینه طول عمر پوشش لایهای از مولایت هفتاد سیکل ده دقیقه ای در کوره با دمای °C1100 ثبت شد. در شرایط آزمون شوک حرارتی طول عمر پوششهای گرادیانی و YSZ به ترتیب 60 و 25 سیکل اندازه گیری شد. پوششهای گرادیانی از مولایت در شوک حرارتی درصد انقباض بیشتری را نسبت به پوشش لایهای مولایت از خود نشان دادند.
In this research, thermal shock behavior, three types of yttria-stabilized zirconia (YSZ), yttria-stabilized zirconia and mullite coating (YSZ/Mullite) and gradient coating of yttria-stabilized zirconia and mullite (YSZ/Mullite) thermal barrier coatings on Inconel 738 low carbon nickel base superalloy along with bond coated by plasma spray method was compared.Using scanning electron microscopy (SEM) and X-ray diffraction (XRD), microstructure and phase analysis were done. The percentage of porosity and thermal shock of coatings at 1100°C temperature was investigated and compared. The results showed that with the increase of mullite in layer and gradient on YSZ coatings, the number of holes and porosity decreases, which is due to the increase in the amount of melted mullite particles. The percentage of porosity related to layer and gradient coating of mullite was obtained as 8 and 3.5% respectively. Using the results of the thermal shock test, it was determined that the lifetime of the mullite layer coating is longer than the mullite gradient coating and the YSZ coating. The maximum lifespan of the layered coating of mullite was recorded as 70 cycles of 10 minutes in a furnace with a temperature of 1100°C. The gradient coatings of mullite showed a higher percentage of shrinkage in thermal shock than the layered mullite coating.
[1] G. Meetham, "Mechanisms for increasing high temperature capability", Part B of ‘requirements for and & Design, vol. 9, pp. 308-317, 1988.
[2] م. م. خرمی راد؛ م. ر. رحیمی پور؛ س. م. م. هادوی و ک. شیروانی جوزانی، "سنتز پودر هگزا آلومینات لانتانیم (LaMgAl11O19) بهمنظور پوشش دهی به روش پلاسما اسپری بر روی سوپر آلیاژ پایه نیکل بهعنوان پوشش سد حرارتی"، فصلنامه فرآیندهای نوین در مهندسی مواد، دوره 12، شماره 3، صفحه 183-173، آذر 1397.
[3] س. ت. رمضانی؛ ض. والفی و ن. احسانی، "بررسی خواص اکسیداسیون و شوک حرارتی پوشش سپرحرارتی کامپوزیتی YSZ/Al2O3 با آلومینای ایجاد شده با فرایند پاشش حرارتی محلول پیشماده"، فصلنامه فرآیندهای نوین در مهندسی مواد، دوره 14، شماره 4، صفحه 90-77، دی 1399.
[4] W. Ma, S. Gong, H. Li & H. Xu, "Novel Thermal Barrier Coatings Based on La2Ce2O7/8YSZ Double-Ceramic-Layer Systems Deposited by Electron Beam Physical Vapor Deposition", Surface and Coatings Technology, vol. 202, pp. 2704–2708, 2008.
[5] H. Vakilifard, R. Ghasemi & M. Rahimipour, "Hot corrosion behaviour of plasma-sprayed functionally graded thermal barrier coatings in the presence of Na 2 SO4 + V2O5 molten salt", Surface and Coatings Technology, vol. 326, 2017.
[6] J. A. Haynes, E. Douglas Rigney, M. K. Ferber & W. D. Porter, "Oxidation and degradation of a plasma-sprayed thermal barrier coating system", Surface and Coatings Technology, vol. 86-87, pp. 102-108, 1996.
[7] M. Mayoral, J. Andrés, M. T. Bona, V. Higuera & F. Belzunce, "Yttria stabilized zirconia corrosion destabilization followed by Raman mapping", Surface and Coatings Technology, vol. 202, pp. 5210-5216, 2008.
[8] G. Di Girolamo, C. Blasi, L. Pilloni & M. Schioppa, "Microstructural and thermal properties of plasma sprayed mullite coatings," Ceramics International, vol. 36, pp. 1389-1395, 2010.
[9] S. Seifert, E. Litovsky, J. I. Kleiman & R. B. Heimann, "Thermal resistance and apparent thermal conductivity of thin plasma-sprayed mullite coatings", Surface and Coatings Technology, vol. 200, pp. 3404-3410, 2006.
[10] J. Berghaus & B. R. Marple, "High-Velocity Oxy-Fuel (HVOF) Suspension Spraying of Mullite Coatings", Journal of Thermal Spray Technology - J Therm Spray Technol, vol. 17, pp. 671-678, 2008.
[11] A. Samuli, "Modified tick thermal barrier coatings", Ph.D. Disseration, Institute of Materials Science, 2004.
[12] H. Jamali, R. Mozafarinia, R. Razavi & R. Ahmadi-Pidani, "Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings", Ceramics International, vol. 38, pp. 6705–6712, 2012.
[13] L. Wang, Y. Wang, X. G. Sun, J. Q. He, Z. Y. Pan & C. H. Wang, "Thermal shock behavior of 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings fabricated by atmospheric plasma spraying", Ceramics International, vol. 38, pp. 3595-3606, 2012.
[14] A. Khan & J. Lu, "Thermal Cyclic Behavior of Air Plasma Sprayed Thermal Barrier Coatings Sprayed on Stainless Steel Substrates", Surface and Coatings Technology, vol. 201, pp. 4653-4658, 2007.
[15] H. Xu & H. Guo, "Thermal barrier coatings", Woodhead Publishing, 2011.
[16] S. Bose, "High temperature coatings: Butterworth-Heinemann Ltd," 2007.
[17] H. Jamali, R. Mozafarinia, R. Razavi, R. Ahmadi-Pidani & M. Loghman-Estarki, "Fabrication and Evaluation of Plasma-Sprayed Nanostructured and Conventional YSZ Thermal Barrier Coatings", Current Nanoscience, vol. 8, pp. 402-409, 2012.
[18] X. H. Zhong, Y. M. Wang, Z. H. Xu, Y. F. Zhang, J. F. Zhang & X. Q. Cao, "Hot-corrosion behaviors of overlay-clad yttria-stabilized zirconia coatings in contact with vanadate–sulfate salts", Journal of the European Ceramic Society, vol. 30, pp. 1401-1408, 2010.
[19] D. W. Parker, "Thermal barrier coatings for gas turbines, automotive engines and diesel equipment", Materials & Design, vol. 13, pp. 345-351,1992.
[20] F. H. Yuan, Z. X. Chen, Z. W. Huang, Z. G. Wang & S. J. Zhu, "Oxidation behavior of thermal barrier coatings with HVOF and detonation-sprayed NiCrAlY bondcoats", Corrosion Science, vol. 50, pp. 1608-1617, 2008.
[21] R. Srinivasan, R. DeAngelis, G. Ice, S. Simpson, J. Harris & B. Davis, "Identification of tetragonal and cubic structures of zirconia", Technical Report, Jun. 1989 - May 1990 Utah Univ, Salt Lake City. Dept. of Chemistry, 1990.
[22] S. Li, X. Zhao, G. Hou, W. Deng, Y. An, H. Zhou & et al, "Thermomechanical properties and thermal cycle resistance of plasma-sprayed mullite coating and mullite/zirconia composite coatings", Ceramics International, vol. 42, pp. 17447-17455, 2016.
[23] F. Xie, D. Li, & W. Zhang, "Long-term failure mechanisms of thermal barrier coatings in heavy-duty gas turbines", Coatings, vol. 10, pp. 1022-1041, 2020.
[24] R. Ahmadi-Pidani, R. Shoja-Razavi, R. Mozafarinia & H. Jamali, "Improving the thermal shock resistance of plasma sprayed CYSZ thermal barrier coatings by laser surface modification", Optics and Lasers in Engineering, vol. 50, pp. 780-786, 2012.
[25] Y. Bai, Z. H. Han, H. Q. Li, C. Xu, Y. L. Xu, C. H. Ding & et al, "Structure–property differences between supersonic and conventional atmospheric plasma sprayed zirconia thermal barrier coatings", Surface and Coatings Technology, vol. 205, pp. 3833-3839, 2011.
[26] M. Li, X. Sun, W. Hu & H. Guan, "Thermocyclic behavior of sputtered NiCrAlY/EB-PVD 7 wt.%Y2O3–ZrO2 thermal barrier coatings", Surface and Coatings Technology, vol. 200, pp. 3770-3774, 2006.
[27] R. Ahmadi-Pidani, R. Shoja-Razavi, R. Mozafarinia & H. Jamali, "Laser surface modification of plasma sprayed CYSZ thermal barrier coatings", Ceramics International, vol. 39, pp. 2473-2480, 2013.
[28] H. Samadi & E. Garcia, "Thermal conductivity of plasma sprayed forsterite/mullite coatings", Ceramics International, vol. 40, pp. 13995-13999, 2014.
[29] P. Ramaswamy, S. Seetharamu, K. Verma, N. Raman & K. Rao, "Thermomechanical fatigue characterization of zirconia (8%Y2O3-ZrO2) and mullite thermal barrier coatings on diesel engine components: Effect of coatings on engine performance", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 214, pp. 729-742, 05/01 2000.