افزایش کارایی الکتروشیمیایی الکترود ابرخازن با استفاده از نانو کامپوزیتهای چهارچوب آلی- فلزی نیکل/گرافن
محورهای موضوعی : سنتز موادمرضیه آزادفلاح 1 , آرمان صدقی 2 * , علی مهدیخانی 3 , هادی حسینی 4
1 - دانشجوی دکتری، گروه مهندسی مواد و متالورژی، دانشگاه بین المللی امام خمینی، قزوین
2 - دانشگاه بین المللی قزویندانشیار،گروه مهندسی مواد و متالورژی، دانشگاه بین المللی امام خمینی، قزوین.
3 - مربی، گروه پژوهشی مواد غیر فلزی پژوهشگاه نیرو، تهران
4 - استادیار، گروه شیمی، دانشگاه ایلام، ایلام.
کلید واژه: ابرخازن نانوکامپوزیت گرافن چهارچوبهای آلی, فلزی,
چکیده مقاله :
چهارچوبهای آلی-فلزی به دلیل سطح ویژه بالا و مناسب بودن اندازه تخلخل بهعنوان مواد الکترودی در ابر خازنها مورد استفاده قرار گرفتند. بااینحال استفاده از چهارچوبهای آلی-فلزی بهعنوان مواد الکترودی بهتنهایی در ابرخازنها، هدایت الکتریکی ضعیف، پایداری ناکافی و خواص مکانیکی نامرغوب را در پی داشته و منجر به کاهش کارایی شدند. در مقاله حاضر برای بهبود هدایت الکتریکی و استفاده از سطح ویژه چهارچوبهای آلی-فلزی، ترکیب گرافن با چهارچوبهای آلی-فلزی نیکل به روش سنتز هیدروترمال تهیه شد و برای جلوگیری از آگلومراسیون، گرافن (مقدار 0، 5/2، 5 و 10 درصد) در حین سنتز افزوده شد. جهت بررسی ساختاری نانوکامپوزیتهای حاصل، از آنالیزهای پراش اشعه ایکس (XRD)، طیفسنجی فوریه مادونقرمز (FTIR)، آنالیز تعیین سطح ویژه (BET)، میکروسکوپ الکترونی عبوری (TEM) و میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM) استفاده شد. برای بررسی رفتار ابرخازنی، آزمونهای الکتروشیمیایی ولتامتری چرخهای و امپدانس الکتروشیمیایی و شارژ-دشارژ انجام شد. الکترود ساختهشده از چهارچوب آلی-فلزی بر پایه نیکل در الکترولیت KOH M6، به ترتیب دارای ظرفیت ویژه F/g 660 بود، درحالیکه کامپوزیت آن با گرافن دارای ظرفیت F/g 1017 بود. در نتیجه، بهرهمندی از خواص همافزایی کامپوزیت و افزایش هدایت الکتریکی چهارچوبهای آلی-فلزی با گرافن، منجر به در دسترسپذیری بیشتر تخلخلها و افزایش ظرفیت کل ذخیره بار شد.
Metal-organic frameworks (MOFs) have been used as electrode materials in supercapacitors (SCs) due to their high specific surface area and suitable porosity size. However, using single-component MOFs in SCs leads to poor electrical conductivity, insufficient stability, and poor mechanical properties, and thwarts the effect of high capacity and efficient performance. In this paper, to improve the electron transfer rate and take advantage of the specific surface of MOFs, nickel-based metal-organic framework/graphene nanocomposites were prepared by hydrothermal in-situ synthesis, and to prevent agglomeration, graphene (0, 2.5, 5, and 10wt%) was added during the synthesis process. To characterize the structure of the nanocomposites, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FESEM) were used. To study the supercapacitor behavior, electrochemical tests, such as cyclic voltammetry, electrochemical impedance, and repeatability behavior were used. The electrode prepared by the nickel-based MOFs in the 6M KOH electrolyte had a specific capacity of 660 F/g, while their composite with graphene had a specific capacity of 1017 F/g. As a result, benefiting from composite properties and increasing electrical conductivity of MOFs with graphene resulted in greater porosity availability and increased total storage capacity.
[1] M. Gong, Y. Li, H. Zhang, B. Zhang, W. Zhou, J. Feng, H. Wang, Y. Liang, Z. Fan & J. D. H. Liu, "Environmental Science Ultrafast high-capacity NiZn battery with NiAlCo- layered double hydroxide", Energy Environ Sci, vol. 7, pp. 2025-2032, 2014.
[2] A. G. Pandolfo & A. F. Hollenkamp, "Carbon properties and their role in supercapacitors", J Power Sources, vol. 157, pp. 11-27, 2016.
[3] A. D. Kumarappa, "Advanced electrode materials for electrochemical supercapacitors", McMaster University, 2012.
[4] ح. دانشمند، م. ذاکری، ع. محمدبیگی و ع. نظری، "تأثیر گرافن بر خواص مکانیکی نانوکامپوزیت مس/گرافن"، فرآیندهای نوین در مهندسی مواد، شماره 141، صفحه 8-9، 1394.
[5] K. R. Prasad, K. Koga & N Miura, "Electrochemical deposition of nanostructured indium oxide: high-performance electrode material for redox supercapacitors", Chem Mater, vol. 16, pp. 1845-1847, 2004.
[6] A. Laforgue, P. Simon, C. Sarrazin & J. F. Fauvarque, "Polythiophene-based supercapacitors", J Power Sources, vol. 80, pp. 14-148, 1999.
[7] A. Clemente, S. Panero, E. Spila & B. Scrosati, "Solid-state, polymer-based, redox capacitors", Solid State Ionics, vol. 85, pp. 273-277, 1996.
[8] M. Azadfalah, A. Sedghi & H. Hosseini, "Synthesis of Nano-Flower Metal – Organic Framework / Graphene Composites As a High-Performance", Electrode Material for Supercapacitors, vol. 48, pp. 2011-2, 2019.
[9] T. Wei, M. Zhang, P. Wu, Y. J. Tang, S. L. Li, F. C. Shen & et al. "POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage," Nano Energy, vol. 34, pp. 205-214, 2017.
[10] Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng, S. Lawes & et al. "Metal organic frameworks for energy storage and conversion", Energy Storage Mater, vol. 2, pp. 35-62, 2016.
[11] W. Xia, C. Qu, Z. Liang, B. Zhao, S. Dai, B. Qiu & et al. "High-Performance Energy Storage and Conversion Materials Derived from a Single Metal-Organic Framework/Graphene Aerogel Composite", Nano Lett, vol. 17, pp. 2788-2795, 2017.
[12] H. Pang, X. Li, Q. Zhao, H. Xue, W. Y. Lai, Z. Hu & et al. "One-pot synthesis of heterogeneous Co3O4-nanocube/Co(OH)2-nanosheet hybrids for high-performance flexible asymmetric all-solid-state supercapacitors", Nano Energy, vol. 35, pp. 138-145, 2017.
[13] P. Wen, P. Gong, J. Sun, J. Wang & S. Yang, "Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density", J Mater Chem, A. 3, pp. 13874-83, 2015. https://doi.org/10.1039/c5ta02461g.
[14] Y. Jiao, J. Pei, C. Yan, D. Chen, Y. Hu & G. Chen, "Layered nickel metal–organic framework for high performance alkaline battery-supercapacitor hybrid devices", J Mater Chem, A. 4, PP. 13344-51, 2016.
[15] L. Wan, E. Shamsaei, C. D. Easton, D. Yu, Y. Liang, X. Chen & et al. "ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high-performance supercapacitor", Carbon N Y, vol. 121, pp. 330-336, 2017.
[16] X. Cao, C. Tan, M. Sindoro & H. Zhang, "Hybrid micro-/nano-structures derived from metal–organic frameworks: preparation and applications in energy storage and conversion", Chem Soc Rev, vol. 46, pp. 2660-77, 2017.
[17] L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi & B. Wang, "Metal–organic frameworks for energy storage: Batteries and supercapacitors", Coord Chem Rev, vol. 307, 361-81, 2016.
[18] M. Azadfalah, A. Sedghi, H. Hosseini & H. Kashani, "Cobalt based Metal Organic Framework/Graphene nanocomposite as high performance battery-type electrode materials for asymmetric Supercapacitors", J Energy Storage, vol. 33, pp. 101925, 2021.
[19] R. Díaz, M. G. Orcajo, J. A. Botas, G. Calleja & J. Palma, "Co8-MOF-5 as electrode for supercapacitors", Mater Lett, vol. 68, pp. 126-128, 2012.
[20] D. Y. Lee, D. V. Shinde, E. K. Kim, W. Lee, I. W. Oh, N. K. Shrestha & et al. "Supercapacitive property of metal-organic-frameworks with different pore dimensions and morphology", Microporous Mesoporous Mater, vol. 171, pp. 53-57, 2013.
[21] Q. Li, H. Guo, R. Xue, M. Wang, M. Xu, W. Yang & et al. "Self-assembled Mo doped Ni-MOF nanosheets based electrode material for high performance battery-supercapacitor hybrid device", Int J Hydrogen Energy, vol. 45, pp. 20820-31, 2020.
[22] K. M. Choi, H. M. Jeong, J. H. Park, Y. B. Zhang, J. K. Kang & O. M. Yaghi, "Supercapacitors of nanocrystalline metal–organic frameworks" ACS Nano, vol. 8, pp. 7451-7, 2014.
[23] P. Wen, P. Gong, J. Sun, J. Wang & S. Yang, "Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density", J Mater Chem, A. 3, pp. 13874-83, 2015.
[24] T. An, Y. Wang, J. Tang, Y. Wang, L. Zhang & G. Zheng. "Journal of Colloid and Interface Science A flexible ligand-based wavy layered metal – organic framework for lithium-ion storage", J Colloid Interface Sci, vol. 445, pp. 320-325, 2015.
[25] Q. Chen, S. Lei, P. Deng, X. Ou, L. Chen, W. Wang & et al. "Direct growth of nickel terephthalate on Ni foam with large mass-loading for high-performance supercapacitors" J Mater Chem, A. 5, pp. 19323–32, 2017.
[26] M. Y. Ghotbi, B. Feli, M. Azadfalah & M. Javaheri, "Ultra high performance N-doped carbon catalysts for the ORR derived from the reaction between organic-nitrate anions inside a layered nanoreactor", RSC Adv, vol. 5, pp. 92577-84, 2015.
[27] J. Yang, C. Zheng, P. Xiong, Y. Li & M. Wei, "Zn-doped Ni-MOF material with a high supercapacitive performance" J Mater Chem, A. 2, pp. 19005-10, 2014.
[28] J. Kim, S. Park, S. Chung & S. Kim, "Preparation and Capacitance of Ni Metal Organic Framework / Reduced Graphene Oxide Composites for Supercapacitors as Nanoarchitectonics" J Nanosci Nanotechnol, vol. 20, pp.2750-4, 2020.
[29] J. Yang, .C. Zheng, P. Xiong, Y. Li & M. Wei, "Zn-doped Ni-MOF material with a high supercapacitive performance", J Mater Chem, A. 2, pp. 19005-10, 2014.
[30] L. Liu, Y. Yan, Z. Cai, S. Lin & X. Hu. "Growth‐Oriented Fe‐Based MOFs Synergized with Graphene Aerogels for High‐Performance Supercapacitors", Adv Mater Interfaces, vol. 5, pp. 1701548, 2018.
[31] G. Majano & J. Pérez-Ramírez, "Scalable room-temperature conversion of copper(II) hydroxide into HKUST-1 (Cu3(btc)2)", Adv Mater, vol. 25, pp. 1052-7, 2013.
[32] S. K. Callear, A. J. Ramirez-cuesta, W. I. F. David, F. Millange & R. I. Walton, "High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu (II) metal – organic framework material HKUST-1", Chem Phys, vol. 427, pp. 9-17. 2013.
[33] ه. حصاری، "سنتز تعدادی از شبکههای نانو ساختار فلزی – آلی نیکل و کبالت و بررسی خاصیت ابرخازنی آنها"، پایاننامه دکتری دانشگاه تربیت مدرس، 1397.
[34] Y. Zhou, Z. Mao, W. Wang, Z. Yang & X. Liu, "In-situ fabrication of graphene oxide hybrid Ni-based metal–organic framework (Ni–MOFs@ GO) with ultrahigh capacitance as electrochemical pseudocapacitor materials", ACS Appl Mater Interfaces, vol. 8, pp. 28904-16, 2016.
[35] M. S. Rahmanifar, H. Hesari, A. Noori, M. Y. Masoomi, A. Morsali & M. F. Mousavi, "A dual Ni/Co-MOF-reduced graphene oxide nanocomposite as a high performance supercapacitor electrode material", Electrochim Acta, vol. 275, pp. 76-86, 2018.
[36] H. Nourmohammadi Miankushki, A. Sedghi & B. Saeid, "Comparison of copper compounds on copper foil as current collector for fabrication of graphene/polypyrrole electrode", J Energy Storage, vol. 19, pp. 201-12, 2018.
[37] H. B. Zhao, Z. B. Fu, H. B. Chen, M. L. Zhong & C. Y. Wang, "Excellent electromagnetic absorption capability of Ni/carbon based conductive and magnetic foams synthesized via a green one pot route", ACS Appl Mater Interfaces, vol. 8, pp. 1468-77, 2016.
[38] Y. Liu, Y. Wang, Y. Chen, C. Wang & L. Guo, "NiCo-MOF nanosheets wrapping polypyrrole nanotubes for high-performance supercapacitors", Appl Surf Sci, vol. 507, pp. 145089, 2020.
[39] M. Mirzaee & C. Dehghanian, "Synthesis of Nickel-Nickel oxide foam by electrochemical method and its application in supercapacitor", J Adv Process Mater Eng, vol. 13, pp. 17-25, 2019.
_||_