اثر محافظتی بیوفیلم حاصل از فعالیت باکتری بیهوازی احیاکنندۀ سولفات بر مقاومت به خوردگی فولاد میکروآلیاژ API X42
محورهای موضوعی : خوردگی و حفاظت موادمجتبی بقال زاده 1 , خلیل الله قیصری 2 , حسین معتمدی 3
1 - دانشجوی کارشناسی ارشد، مهندسی مواد، گرایش شناسایی و انتخاب مواد، دانشگاه شهید چمران اهواز، اهواز، ایران.
2 - دانشیار، مهندسی مواد، گروه مهندسی مواد، دانشکده مهندسی، دانشگاه شهید چمران اهواز، اهواز، ایران.
3 - استاد، میکروبیولوژی، گروه زیستشناسی، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، ایران.
کلید واژه: طیفسنجی امپدانس الکتروشیمیایی, بیوفیلم, فولاد میکروآلیاژ X42, پلاریزاسیون خطی, گونۀ باکتریایی کلستردیدیوم احیاکننده سولفات,
چکیده مقاله :
در این پژوهش، اثر محافظتی بیوفیلم ایجاد شده توسط گونۀ باکتریایی کلستردیدیوم، به عنوان یک باکتری بی هوازی احیاکننده سولفات (SRB)، بر روی سطح فولاد میکروآلیاژ X42 در محلول شبیه سازی شده خاک شور آزمایشگاهی در مقایسه با شرایط استریل مورد ارزیابی قرار گرفته است. به منظور ارزیابی مورفولوژی و ریزساختار سطحی، از میکروسکوپ الکترونی روبشی نشر میدان (FESEM) مجهز به طیفسنج تفکیک انرژی (EDS) استفاده شد. رفتار خوردگی نیز به کمک آزمون پلاریزاسیون خطی و طیف نگاری امپدانس الکتروشیمیایی (EIS) مورد بررسی قرار گرفت. بررسی های ریزساختاری نشانگر تشکیل بیوفیلم حاوی سه جزء سلول های باکتری، مادۀ پلیمری برون سلولی (EPS) و محصولات خوردگی بود. در این ساختار نسبتاً متراکم، ترکیب نیمه رسانای سولفید آهن که مخرب رفتار حفاظتی بیوفیلم است مشاهده نشد. بر پایه آزمون EIS، بیوفیلم ایجاد شده از تخلخل کمتری نسبت به محصولات خوردگی ایجاد شده در شرایط استریل برخوردار است. همچنین، بیوفیلم تشکیل شده در زمان ماندگاری 21 روز در محیط تلقیح شده با باکتری، مقاومت پلاریزاسیون را تا.cm2 Ω 7330 ارتقا داد؛ درصورتیکه در همین زمان، مقاومت پلاریزاسیون لایۀ محافظ محصولات خوردگی ایجاد شده در شرایط استریل معادل با.cm2 Ω 1421 بوده است. این مقایسه، بهبود 5 برابر در مقاومت به خوردگی را در اثر رفتار محافظتی بیوفیلم نشان می دهد.
In this study, the protective behavior of the biofilm produced on the surface of the API X42 micro-alloyed pipeline steel by the bacterium clostridium sp. as an anaerobic sulfate-reducing bacteria (SRB) is evaluated in a saline simulated soil solution in comparison with the sterile medium. Microstructure and surface morphology was examined by field emission scanning electron microscopy (FESEM) coupled with energy dispersive spectroscopy (EDS). Corrosion properties were investigated using linear polarization and electrochemical impedance spectroscopy (EIS). The results approve the formation of a biofilm consisting of bacterial cells, extracellular polymeric substance (EPS), and corrosion products. In this relatively dense biofilm, semiconductive iron sulfide which is destructive to the corrosion behavior of biofilm is not observed. In addition, the biofilm produced on the metal surface at immersion time of 21 days in the bacterial inoculated medium improves polarization resistance to 7330 Ω.cm2, while at this time the polarization resistance of the protective corrosion products layer created in the sterile condition is about 1421 Ω.cm2. This comparison shows a 5-fold improvement in corrosion resistance as a result of the biofilm's protective behavior.
[1] H. Liu & Y. F. Cheng. "Corrosion of initial pits on abandoned X52 pipeline steel in a simulated soil solution containing sulfate-reducing bacteria", Journal of Materials Research and Technology, vol. 9, no. 4, pp. 7180-7189, 2020.
[2] Z. Wang, F. Xie, D. Wang & J. Liu, "Effect of applied potential on stress corrosion cracking behavior of X80 steel in alkaline soil simulated solution with sulfate-reducing bacteria", Engineering Failure Analysis, vol. 121, pp.105109, 2021.
[3] H. Liu & Y. F. Cheng, "Mechanism of microbiologically influenced corrosion of X52 pipeline steel in a wet soil containing sulfate-reduced bacteria", Electrochimica Acta, vol. 253, pp. 368-378, 2017.
[4] H. Liu & Y. F. Cheng, "Microbial corrosion of initial perforation on abandoned pipelines in wet soil containing sulfate-reducing bacteria", Colloids and Surfaces B: Biointerfaces, vol. 190, pp. 110899, 2020.
[5] M. Moradi, Z. Song, X. Nie, M. Yan & F. Q. Hu, "Investigation of bacterial attachment and biofilm formation of two different Pseudoalteromonas species: Comparison of different methods", International Journal of Adhesion and Adhesives, vol. 65, pp. 70-78, 2016.
[6] V. S. Liduino, M. T. S. Lutterbach & E. F. C. Sérvulo, "Biofilm activity on corrosion of API 5L X65 steel weld bead", Colloids and Surfaces B: Biointerfaces, vol. 172, pp. 43-50, 2018.
[7] R. Jia, D. Yang, J. Xu, D. Xu & T. Gu, "Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation", Corrosion Science, vol. 127, pp. 1–9, 2017.
[8] K. M. Usher, A. H. Kaksonen, I. Cole & D. Marney, "Critical review: microbially influenced corrosion of buried carbon steel pipes", International Biodeterioration & Biodegradation, vol. 93, pp. 84-106, 2014.
[9] P. Watnick & R. Kolter, "Biofilm, city of microbes", Journal of bacteriology, vol. 182, no. 10, pp. 2675-2679, 2000.
[10] B. J. Little & J. S. Lee, "Microbiologically influenced corrosion", vol. 3, John Wiley & Sons, 2007.
[11] J. W. Costerton, P. S. Stewart & E. P. Greenberg, "Bacterial biofilms: a common cause of persistent infections", Science, vol. 284, no. 5418, pp. 1318-1322, 1999.
[12] Z. Shahryari, Kh. Gheisari & H. Motamedi, "Effect of sulfate reducing Citrobacter sp. strain on the corrosion behavior of API X70 microalloyed pipeline steel", Materials Chemistry and Physics, vol. 236, pp. 121799, 2019.
[13] I. Ziadi, H. Akrout, H. Hassairi, L. El-Bassi & L. Bousselmi, "Investigating the biocorrosion mechanism of 304L stainless steel in raw and treated urban wastewaters", Engineering Failure Analysis, vol. 101, pp. 342-56. 2019.
[14] C. Sun, J. Xu & F. Wang, "Interaction of sulfate-reducing bacteria and carbon steel Q 235 in biofilm", Industrial & engineering chemistry research, vol. 50, no. 22, pp.12797-12806, 2011.
[15] F. M. AlAbbas, C. Williamson, S. M. Bhola, J. R. Spear, D. L. Olson, B. Mishra & A. E. Kakpovbia, "Microbial corrosion in linepipe steel under the influence of a sulfate-reducing consortium isolated from an oil field", Journal of materials engineering and performance, vol. 22, no. 11, pp. 3517-3529, 2013.
[16] M. Lv, M. Du, X. Li, Y. Yue & X. Chen, "Mechanism of microbiologically influenced corrosion of X65 steel in seawater containing sulfate-reducing bacteria and iron-oxidizing bacteria", Journal of Materials Research and Technology, vol. 8, no. 5, pp. 4066-4078, 2019.
[17] Q. Li, J. Wang, X. Xing & W. Hu, "Corrosion behavior of X65 steel in seawater containing sulfate reducing bacteria under aerobic conditions", Bioelectrochemistry, vol. 122, pp.40-50, 2018.
[18] ب. یوسفیان، ک. امینی و م. کثیری، "بررسی تأثیر سرعت سرد کردن، دمای پیشگرم و تغییر ترکیب شیمیایی بر روی ریز ساختار و خواص مکانیکی فولاد میکروآلیاژ وانادیوم دار متوسط کربن"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 9، شماره 2، ، صفحه 54-47، 1394.
[19] ج. احمدی راد و غ. خلج، "مدل سازی دگرگونی تشکیل آستنیت در منطقه متأثر حرارتی جوش دو فولاد خط لوله X65 و X70"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 12، شماره 3، صفحه 70-57، 1397.
[20] K. A. Kouassi, A. T. Dadie, Z. Y. Nanga, K. M. Dje & Y. G. Loukou, "Prevalence of sulfite reducing Clostridium species in barbecued meat in Abidjan, Cote d’Ivoire", Journal of Applied Biosciences, vol. 38, pp. 2518-2522, 2011.
[21] E. E. Stansbury & R. A. Buchanan, "Fundamentals of electrochemical corrosion", ASM international, 2000.
[22] F. M. AlAbbas, C. Williamson, S. M. Bhola, J. R. Spear, D. L. Olson, B. Mishra & A. E. Kakpovbia, "Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80)", International Biodeterioration & Biodegradation, vol. 78, pp. 34-42, 2013.
[23] X. Chen, G. Wang, F. Gao, Y. Wang & C. He, "Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings", Corrosion Science, vol. 101, pp. 1-11, 2015.
[24] X. Ping, X. Chao, W. Tao, W. Jing & Zh. Yajun, "Chemical and electron microbial influenced corrosion", Journal of Chemical and Pharmaceutical Research, vol. 5, no. 12, pp. 476-481, 2013.
[25] J. Xu, C. Sun, M. Yan & F. Wang, "Effects of sulfate reducing bacteria on corrosion of carbon steel Q235 in soil-extract solution", International Journal of Electrochemical Science, vol. 7, pp.11281–96, 2012.
[26] Z. Shahryari, Kh. Gheisari & H. Motamedi, "Corrosion behavior of API X70 microalloyed pipeline steel in a simulated soil solution in the absence and presence of aerobic Pseudomonas species", Materials Research Express, vol. 6, no. 6, pp. 065409, 2019.
[27] A. George, "Microbial reduction of phosphate?, Microbial Diversity project", School of molecular and medical biosciences, Universiiy of wales cardff, Cardff, UK, 1995.
[28] C. Sun, J. Xu & F. Wang, "Interaction of sulfate-reducing bacteria and carbon steel Q 235 in biofilm", Industrial & Engineering Chemistry Research, vol. 50, no. 22, pp. 12797-12806, 2011.
[29] R. G. Kelly, J. R. Scully, D. Shoesmith & R. G. Buchheit, "Electrochemical techniques in corrosion science and engineering", CRC Press, 2002.
_||_