ارزیابی پارامترهای مؤثر در فرآیند تجزیه قلیایی زیرکن و تعیین شرایط عملیاتی بهینه جهت استحصال زیرکونیم
محورهای موضوعی : سرامیک ها و مواد نسوزعلی یداللهی 1 , میثم تراب مستعدی 2 , کمال صابریان 3 * , امیر چرخی 4
1 - استادیار، پژوهشکده چرخه سوخت هستهای، پژوهشگاه علوم و فنون هستهای، تهران، ایران.
2 - استاد، پژوهشکده چرخه سوخت هستهای، پژوهشگاه علوم و فنون هستهای، تهران، ایران.
3 - دانشیار، پژوهشکده چرخه سوخت هستهای، پژوهشگاه علوم و فنون هستهای، تهران، ایران.
4 - دانشیار، پژوهشکده چرخه سوخت هستهای، پژوهشگاه علوم و فنون هستهای، تهران، ایران.
کلید واژه: طراحی آزمایش تاگوچی, زیرکونیم, زیرکن, تجزیه قلیایی, تحلیل رابطهای خاکستری,
چکیده مقاله :
فرآیند تجزیه قلیایی با سدیم هیدروکسید یکی از متداولترین روش ها جهت استحصال زیرکونیم از کانی زیرکن می باشد. این فرآیند شامل سه مرحله ذوب با قلیا، آبشویی و فروشویی اسیدی است. در این پژوهش روش طراحی آزمایش تاگوچی به همراه تحلیل رابطه ای خاکستری، جهت آنالیز و بهینهسازی پارامترهای مؤثر بر فرآیند تجزیه قلیایی، جهت استحصال زیرکونیم از کانی زیرکن بکار گرفته شد. نتایج بهدستآمده نشان داد که ذوب قلیایی در شرایط بهینه دمای 650 درجه سانتیگراد، نسبت مولی سدیم هیدروکسید به زیرکن 6:1 و غلظت سدیم هیدروکسید 30 درصد، منجر به تجزیه 6/98 درصدی زیرکن اولیه می شود. بهنحویکه هیچ پیکی از زیرکن در الگوی پراش اشعه ایکس محصول بهدستآمده از واکنش ذوب قلیایی در این شرایط مشاهده نشد. در مرحله آبشویی، سه مرتبه شستشوی محصول بهدستآمده از واکنش ذوب قلیایی با نسبت مایع به جامد 5 در دمای 30 درجه سانتیگراد منجر به حذف 9/98 درصد از سدیم و 9/77 درصد از سیلیسیم موجود در ترکیب شد. در این شرایط بهینه، طیف پراش اشعه ایکس جامد بهدستآمده از آبشویی پس از حرارت دهی در دمای 800 درجه سانتیگراد، حضور پیک های ZrO2 و SiO2 را نشان داد. در مرحله اسیدشویی، فروشویی با سولفوریک اسید 4 مولار با نسبت مایع به جامد 20 و در دمای 60 درجه سانتیگراد منجر به بازیابی 7/92 درصدی زیرکونیم موجود در زیرکن اولیه شده و مقدار سیلیسیم در محلول فروشویی اسیدی 31 میلیگرم بر لیتر به دست آمد. یافته های این پژوهش شرایط بهینه عملیاتی برای روشی آسان، کمهزینه و مناسب در مقیاس صنعتی برای استحصال زیرکونیم از کانی زیرکن را ارائه می دهد.
Alkali decomposition with NaOH is the most commonly used method for extraction of zirconium from zircon mineral. This process includes alkali fusion, water leaching and acid leaching steps. In this study, Taguchi method was utilized to find the optimum operational conditions of alkali decomposition process. The results showed that under the optimal conditions of NaOH/ZrSiO4 mole ratio of 6:1, NaOH concentration of 30% and fusion temperature of 650 °C, 98.6% of the initial zircon was decomposed, as no pick of ZrSiO4 was observed in the XRD pattern of the alkali fusion product. The conditions of water leaching step were investigated as well, and under the optimal conditions of, liquid–solid ratio of 5:1, leaching temperature of 30 °C and leaching three times, 96.2% of sodium and 77.9% of silica content in the alkali fusion product were removed. The crystal phase structures of ZrO2 and SiO2 were observed in the residual solid after heat treatment. In the acid leaching step, leaching with 4 mol/L sulfuric acid with liquid/solid ratio of 20 at temperature of 60 °C, resulted in 92.73% recovery of zirconium and the silica content in the acid leaching solution was obtained 31 ppm. Results of this research suggest the optimal operational conditions of the facile, low price and proper industrial method for recovery of zirconium from zircon mineral.
[1] J. Gamboge, "Zirconium and Hafnium. U.S.Geological Survey", Mineral Commodity Summaries, pp. 192-193, 2008.
[2] م. ا. شافعی، س. ج. حسینی پور و م. رجبی، "اثر افزودن زیرکونیم بر ریزساختار و سختی آلیاژ Al-6Zn-2.5Mg-1.5Cu تولیدی به روش آلیاژسازی مکانیکی"، فرآیندهای نوین در مهندسی مواد، دوره 9، شماره 4، صفحه 235-225، 1394.
[3] س. پرویزی، ز. احمدی، م. شاهدی اصل و م. جابری زمهریر، "تأثیر افزودنی نانو گرافیت بر رفتار چگالش کامپوزیتهای دیبورید زیرکونیم-کاربید سیلیسیم ساخته شده به روش تفجوشی پلاسمای جرقهای"، فرآیندهای نوین در مهندسی مواد، دوره 12، شماره 4، صفحه 65-53، 1397.
[4] س. م. امامی، ا. صلاحی، م. ذاکری و س. ع. طیبی فرد، "سینتر نانوکامپوزیت ZrB2-SiC-ZrC با استفاده از جرقۀ پلاسما (SPS) از پودرهای سنتز شده به روشMASPS"، فرآیندهای نوین در مهندسی مواد، دوره 14، شماره 2، صفحه 11-1، 1399.
[5] م. اسدی خانوکی، "مورفولوژی سطح شکست و ارتباط آن با چقرمگی/انعطافپذیری در شیشه فلز حجمی آلیاژ Zr46(Cu4.5/5.5Ag1/5.5)46Al8"، فرآیندهای نوین در مهندسی مواد، دوره 13، شماره 2، صفحه 16-1، 1398.
[6] C. F. K. Murti & H. Aldila, "Materials Science Forum", vol. 966, pp. 89-94, 2019.
[7] N. D. Lestari, R. Nurlaila, N.F. Muwwaqor, S. Pratapa, Ceramics International, vol. 45, no. 6, pp. 6639-6647, 2019.
[8] J. C. Liu, J. Song, Y. Wang, Q. Q. Wang, T. Qi, C. Q. Zhang & J. K. Qu, "Kinetics Studies on a Novel Decomposition Method of Zircon Sand", Advanced Materials Research, vol. 953, pp. 1113-1116, 2014.
[9] A. Abdelkader, A. Daher & E. El-Kashef, "Novel decomposition method for zircon", Journal of Alloys and Compounds, vol. 460, no. 1, pp. 577-580, 2008.
[10] K. El Barawy, S. El Tawil & A. Francis, "Alkali fusion of zircon sand", Mineral Processing and Extractive Metallurgy, vol. 109, no. 1, pp. 49-56, 2000.
[11] C. Yamagata, J. B. Andrade, V. Ussui, N. B. De Lima & J. O. A. Paschoal, "High purity zirconia and silica powders via wet process: Alkali fusion of zircon sand", Paper presented at the Materials Science Forum, no 591-593, pp. 771-776. 2008.
[12] J. Song, J. F. Fan, J. C. Liu, R. Liu, J. K. Qu & T. Qi, "A Two-step Zircon Decomposition Method to Produce Zirconium Oxychloride: Alkali Fusion and Water Leaching", Rare Metals, vol 39, pp. 448–454, 2015.
[13] A. Yadollahi, A. M. Ajorloo & A. Zolfaghari, "Application of Grey-Taguchi Method for Simultaneous Optimization of Multiple Quality Characteristics in Lead-Slag Radiation Shielding Concrete", Boson Journal of Modern Physics, vol. 2, no. 1, pp. 60-72, 2015.
[14] S. Datta, S. Sankar & J. Mahapatra, "Risk assessment in IT outsourcing using fuzzy decision-making approach: An Indian perspective", Journal of Advanced Manufacturing Systems, vol. 9, no. 02, pp. 117-128, 2010.
[15] B. Zhang, J. Chen, X. Yin & Z. Gao, "Proceedings of the Institution of Mechanical Engineers", Part G: Journal of Aerospace Engineering, vol. 233, no. 12, pp. 4598-4605, 2019.
[16] G. Taguchi & Y. Yokoyama, "Taguchi Methods: Design of Experiments," Amer Supplier Inst, 1993.
[17] S. L. Yingjie, Y. N. Xie & J. Forrest, "Grey Systems", Theory and Application, vol. 6, no. 1, pp. -, 2016.
[18] P. A. Sylajakumari, R. Ramakrishnasamy & G. Palaniappan, "Taguchi grey relational analysis for multi-response optimization of wear in co-continuous composite", Materials (Basel), vol. 11, no. 9, pp. 1-17, 2018.
[19] Y. Kuo, T. Yang & G. W. Huang, "The use of grey relational analysis in solving multiple attribute decision-making problems", Computers & Industrial Engineering, vol. 55, no. 1, pp. 80-93, 2008.
[20] J. T. Huang & Y. S. Liao, "Optimization of machining parameters of Wire-EDM based on Grey relational and statistical analyses", International Journal of Production Research, vol. 41, no. 8, pp. 1707-1720, 2003.
[21] A. Benedetti, G. Fagherazzi & F. Pinna, "Preparation and structural characterization of ultrafine zirconia powders", Journal of the American Ceramic Society, vol. 72, no. 3, pp. 467-469, 1989.
[22] A. Benedetti, G. Fagherazzi, F. Pinna & S. Polizzi, "Structural properties of ultra-fine zirconia powders obtained by precipitation methods", Journal of Materials Science, vol. 25, no. 2, pp. 1473-1478, 1990.
[23] J. C. C. Clayton & C. J. Sindlinger, "Method of Recovering Zirconium Values from Zircon", Google Patents, 1960.
_||_