تأثیر سرعت دورانی در جوشکاری اصطکاکی اختلاطی بر ریزساختار و خواص مکانیکی اتصال لبه رویهم آلیاژ AA5456
محورهای موضوعی : روش ها و فرآیندهای نوین در تولید
1 - استادیار، دانشکده مهندسی مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر تهران.
کلید واژه: خواص مکانیکی, ریزساختار, جوشکاری اصطکاکی اختلاطی لبه رویهم آلیاژ آلومینیم AA5456, سرعت دورانی ابزار,
چکیده مقاله :
فرآیند جوشکاری اصطکاکی اختلاطی، روش اتصال حالت جامدی است که بسیاری از عیوب رایج در روشهای ذوبی را ندارد. در این فرآیند برای ایجاد جوش بهینه باید پارامترهای مختلف جوشکاری از جمله هندسه ابزار، سرعت دورانی و سرعت پیشروی بهینه گردد. هدف از پژوهش حاضر بررسی اثر سرعت دورانی جوشکاری اصطکاکی اختلاطی بر ریزساختار و خواص مکانیکی اتصال لبه رویهم آلیاژ 5456AA در حالت دوار است. بدین منظور، نمونهها با سرعتهای دورانی 300، 500، 700 و 900 دور بر دقیقه و سرعت جوشکاری 45 میلیمتر بر دقیقه جوشکاری شدند. بهطوری که ورق کارسرد شده 321H با ضخامت 5 میلیمتر بر لولهی آنیل شده به ضخامت 5/2 میلیمتر در حالت Lap joint قرار داده شدند. در ابتدا درشت ساختار و ریزساختار مقطع جوش توسط میکروسکوپ نوری و میکروسکوپ الکترون روبشی مورد بررسی قرار گرفت. سپس پروفیل سختی و آزمون کشش نمونهها به دست آمد و با یکدیگر مقایسه گردید. در نهایت سطح مقطع شکست برای تعدادی از نمونهها، توسط میکروسکوپ الکترون روبشی مورد بررسی قرار گرفت. نتایج بررسیهای درشت ساختاری و ریزساختاری نشان میدهد که افزایش سرعت دورانی سبب افزایش سیلان عمودی مواد، ارتفاع عیب هوک و اندازه دانه در دکمه جوش و همچنین ریز شدن رسوبات میگردد و بالعکس. با افزایش سرعت دورانی سختی جوش کاهش ولی عرض ناحیه جوش افزایش مییابد. بر اساس نتایج، نمونه جوشکاری شده با سرعت دورانی 700 دور بر دقیقه دارای جوش بسیار تمیز و بدون عیب است که در آزمون کشش از فلز پایه شکسته میشود.
Friction stir welding process is solid state welding method that does not have many common defects in fusion methods. In this method for creating optimum weld, some parameters should be optimized, such as welding tool geometry, rotational speed and travel speed. The aim of this study was to investigate the effect of rotational speed on microstructure and mechanical properties of friction stir lap welding AA5456 in rotary state to optimize the parameter values. For this purpose, Welding process was performed in rotating state, rotating tool was plunged from the cold-worked tube (AA 5456-H321 with 5 mm thickness) surface into the surface of Annealed tube (AA 5456-O with 2.5 mm thickness) and lap joints were produced by rotational speeds of 300, 500, 700 and 900 rpm and welding speed of 45 mm/min. Macro and microstructure of weld cross sections by optical microscopy (OM) and scanning electron microscopy (SEM) were studied. Then the hardness profile and tensile shear test were obtained and compared to another. Finally the fracture surfaces of some samples were examined by using a scanning electron microscope (SEM). The Macro and microstructure results show that increasing of rotation speed, increases the vertical flow of material, the height of hook as well as fine-grained sediments in the nugget zone. Increasing the rotational speed, decreases hardness of weld nugget. The results of tensile shear test show that the welding parameter of (700 rpm- 45 mm/min) is the optimal combination of parameters in this study.
[1] H. Shirazi, S. Kheirandish & M. A. Safarkhanian, "Effect of process parameters on the macrostructure and defect formation in friction stir lap welding of AA5456 aluminum alloy", Measurement, vol. 76, pp. 62-69, 2015.
[2]E. Salari, M. Jahazi, A. Khodabandeh & H. G. Nanesa, "Friction stir lap welding of 5456 aluminum alloy with different sheet thickness: process optimization and microstructure evolution", The International Journal of Advanced Manufacturing Technology, pp. 1-10, 2015.
[3]J. M. Piccini & H. G. Svoboda, "Effect of pin length on Friction Stir Spot Welding (FSSW) of dissimilar Aluminum-steel joints", Procedia Materials Science, vol. 9, pp. 504-513, 2015.
[4] Y. Zhang, X. Cao, S. Larose & P. Wanjara, "Review of tools for friction stir welding and processing", Canadian Metallurgical Quarterly, vol. 51, pp. 250-261, 2012.
[5]X. Cao & M. Jahazi, Effect of tool rotational speed and probe length on lap joint quality of a friction stir welded magnesium alloy, Materials & Design, vol. 32, pp. 1-11. 2011.
[6]T. Saeid, A. Abdollah-Zadeh & B. Sazgari, "Weldability and mechanical properties of dissimilar aluminum–copper lap joints made by friction stir welding", Journal of Alloys and Compounds, vol. 490, pp. 652-655, 2010.
[7]Z. Chen, T. Pasang & Y. Qi, "Shear flow and formation of Nugget zone during friction stir welding of aluminium alloy 5083-O", Materials Science and Engineering: A, vol. 474, pp. 312-316, 2008.
[8]L. Dubourg, A. Merati & M. Jahazi, "Process optimisation and mechanical properties of friction stir lap welds of 7075-T6 stringers on 2024-T3 skin", Materials & Design, vol. 31, pp. 3324-3330, 2010.
[9]D. Fersini & A. Pirondi, Analysis and modelling of fatigue failure of friction stir welded aluminum alloy single-lap joints, Engineering Fracture Mechanics, vol. 75, pp. 790-803, 2008.
[10]R. Fonda, P. Pao, H. Jones, C. Feng, B. Connolly & A. Davenport, "Microstructure, mechanical properties, and corrosion of friction stir welded Al 5456", Materials Science and Engineering: A, vol. 519, pp, 1-8, 2009.
[11]C. Zhou, X. Yang & G. Luan, "Investigation of microstructures and fatigue properties of friction stir welded Al–Mg alloy", Materials Chemistry and Physics, vol. 98, pp, 285-290, 2006.
[12]R. S. Mishra & Z. Ma, "Friction stir welding and processing", Materials Science and Engineering: R: Reports, vol. 50, pp, 1-78, 2005.
[13]E. Cerri & P. Leo, "Mechanical properties evolution during post-welding-heat treatments of double-lap Friction Stir Welded joints", Materials & Design, vol. 32, pp, 3465-3475, 2011.
[14]A. Etter, T. Baudin, N. Fredj & R. Penelle, "Recrystallization mechanisms in 5251 H14 and 5251 O aluminum friction stir welds", Materials Science and Engineering: A, vol. 445, pp, 94-99, 2007.
[15]J. Yang, B. Xiao, D. Wang & Z. Ma, "Effects of heat input on tensile properties and fracture behavior of friction stir welded Mg–3Al–1Zn alloy", Materials Science and Engineering: A, vol. 527, pp. 708-714, 2010.
[16]F. Fadaeifard, K. A. Matori, M. Toozandehjani, A. R. Daud, M. K. A. M. Ariffin, N. K. Othman & et al., "Influence of rotational speed on mechanical properties of friction stir lap welded 6061-T6 Al alloy", Transactions of Nonferrous Metals Society of China, vol. 24, pp. 1004-1011, 2014.
[17]T. Hirata, T. Oguri, H. Hagino, T. Tanaka, S. W. Chung, Y. Takigawa & et al., "Influence of friction stir welding parameters on grain size and formability in 5083 aluminum alloy", Materials Science and Engineering: A, vol. 456, pp. 344-349, 2007.
[18]M. Ericsson, L.-Z. Jin & R. Sandström, "Fatigue properties of friction stir overlap welds", International journal of fatigue, vol. 29, pp. 57-68, 2007.
[19]G. Buffa, G. Campanile, L. Fratini & A. Prisco, "Friction stir welding of lap joints: Influence of process parameters on the metallurgical and mechanical properties", Materials Science and Engineering: A, vol. 519, pp. 19-26, 2009.
[20] م. نادری، م. ع. صفرخانیان، ا. ح. کوکبی و ا. عبداله زاده، "بررسی تأثیر هندسه ابزار بر خواص مکانیکی و شکل گیری عیوب رایج در اتصال لبه روی هم آلیاژهای آلومینیوم در فرآیند جوشکاری هم زن اصطکاکی"، فصلنامه علمی و پژوهشی مواد نوین، دانشگاه مجلسی، دوره 11، شماره 1، ص 10-1، بهار 1396.
]21[م. ع. صفرخانیان، م. گودرزی و س. م. ع. بوترابی،"مکانیزم تشکیل دانه ها در منطقه ی اختلاط حین جوشکاری اصطکاکی اختلاطی (FSW) و بررسی اثر سرعت دورانی ابزار و سرعت جوشکاری بر اندازه دانه ها"، فصلنامه علمی و پژوهشی مواد نوین، دانشگاه مجلسی، دوره 6، شماره 2، ص 19-9، تابستان 1391.
_||_
[1] H. Shirazi, S. Kheirandish & M. A. Safarkhanian, "Effect of process parameters on the macrostructure and defect formation in friction stir lap welding of AA5456 aluminum alloy", Measurement, vol. 76, pp. 62-69, 2015.
[2]E. Salari, M. Jahazi, A. Khodabandeh & H. G. Nanesa, "Friction stir lap welding of 5456 aluminum alloy with different sheet thickness: process optimization and microstructure evolution", The International Journal of Advanced Manufacturing Technology, pp. 1-10, 2015.
[3]J. M. Piccini & H. G. Svoboda, "Effect of pin length on Friction Stir Spot Welding (FSSW) of dissimilar Aluminum-steel joints", Procedia Materials Science, vol. 9, pp. 504-513, 2015.
[4] Y. Zhang, X. Cao, S. Larose & P. Wanjara, "Review of tools for friction stir welding and processing", Canadian Metallurgical Quarterly, vol. 51, pp. 250-261, 2012.
[5]X. Cao & M. Jahazi, Effect of tool rotational speed and probe length on lap joint quality of a friction stir welded magnesium alloy, Materials & Design, vol. 32, pp. 1-11. 2011.
[6]T. Saeid, A. Abdollah-Zadeh & B. Sazgari, "Weldability and mechanical properties of dissimilar aluminum–copper lap joints made by friction stir welding", Journal of Alloys and Compounds, vol. 490, pp. 652-655, 2010.
[7]Z. Chen, T. Pasang & Y. Qi, "Shear flow and formation of Nugget zone during friction stir welding of aluminium alloy 5083-O", Materials Science and Engineering: A, vol. 474, pp. 312-316, 2008.
[8]L. Dubourg, A. Merati & M. Jahazi, "Process optimisation and mechanical properties of friction stir lap welds of 7075-T6 stringers on 2024-T3 skin", Materials & Design, vol. 31, pp. 3324-3330, 2010.
[9]D. Fersini & A. Pirondi, Analysis and modelling of fatigue failure of friction stir welded aluminum alloy single-lap joints, Engineering Fracture Mechanics, vol. 75, pp. 790-803, 2008.
[10]R. Fonda, P. Pao, H. Jones, C. Feng, B. Connolly & A. Davenport, "Microstructure, mechanical properties, and corrosion of friction stir welded Al 5456", Materials Science and Engineering: A, vol. 519, pp, 1-8, 2009.
[11]C. Zhou, X. Yang & G. Luan, "Investigation of microstructures and fatigue properties of friction stir welded Al–Mg alloy", Materials Chemistry and Physics, vol. 98, pp, 285-290, 2006.
[12]R. S. Mishra & Z. Ma, "Friction stir welding and processing", Materials Science and Engineering: R: Reports, vol. 50, pp, 1-78, 2005.
[13]E. Cerri & P. Leo, "Mechanical properties evolution during post-welding-heat treatments of double-lap Friction Stir Welded joints", Materials & Design, vol. 32, pp, 3465-3475, 2011.
[14]A. Etter, T. Baudin, N. Fredj & R. Penelle, "Recrystallization mechanisms in 5251 H14 and 5251 O aluminum friction stir welds", Materials Science and Engineering: A, vol. 445, pp, 94-99, 2007.
[15]J. Yang, B. Xiao, D. Wang & Z. Ma, "Effects of heat input on tensile properties and fracture behavior of friction stir welded Mg–3Al–1Zn alloy", Materials Science and Engineering: A, vol. 527, pp. 708-714, 2010.
[16]F. Fadaeifard, K. A. Matori, M. Toozandehjani, A. R. Daud, M. K. A. M. Ariffin, N. K. Othman & et al., "Influence of rotational speed on mechanical properties of friction stir lap welded 6061-T6 Al alloy", Transactions of Nonferrous Metals Society of China, vol. 24, pp. 1004-1011, 2014.
[17]T. Hirata, T. Oguri, H. Hagino, T. Tanaka, S. W. Chung, Y. Takigawa & et al., "Influence of friction stir welding parameters on grain size and formability in 5083 aluminum alloy", Materials Science and Engineering: A, vol. 456, pp. 344-349, 2007.
[18]M. Ericsson, L.-Z. Jin & R. Sandström, "Fatigue properties of friction stir overlap welds", International journal of fatigue, vol. 29, pp. 57-68, 2007.
[19]G. Buffa, G. Campanile, L. Fratini & A. Prisco, "Friction stir welding of lap joints: Influence of process parameters on the metallurgical and mechanical properties", Materials Science and Engineering: A, vol. 519, pp. 19-26, 2009.
[20] م. نادری، م. ع. صفرخانیان، ا. ح. کوکبی و ا. عبداله زاده، "بررسی تأثیر هندسه ابزار بر خواص مکانیکی و شکل گیری عیوب رایج در اتصال لبه روی هم آلیاژهای آلومینیوم در فرآیند جوشکاری هم زن اصطکاکی"، فصلنامه علمی و پژوهشی مواد نوین، دانشگاه مجلسی، دوره 11، شماره 1، ص 10-1، بهار 1396.
]21[م. ع. صفرخانیان، م. گودرزی و س. م. ع. بوترابی،"مکانیزم تشکیل دانه ها در منطقه ی اختلاط حین جوشکاری اصطکاکی اختلاطی (FSW) و بررسی اثر سرعت دورانی ابزار و سرعت جوشکاری بر اندازه دانه ها"، فصلنامه علمی و پژوهشی مواد نوین، دانشگاه مجلسی، دوره 6، شماره 2، ص 19-9، تابستان 1391.