بررسی شرایط بهینه آسیابکاری در تولید نانوکامپوزیت Mg-3Zn-1Mn
محورهای موضوعی : بیوموادسعید جبارزارع 1 , حمید رضا بخششی راد 2 , امیرعباس نوربخش 3 , تهمینه احمدی 4
1 - دانشجوی دکترای مواد، واحد شهرضا، دانشگاه آزاد اسلامی، اصفهان، ایران
2 - استادیار، مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
3 - دانشیار، واحد شهرضا، دانشگاه آزاد اسلامی، اصفهان، ایران.
4- استادیار، واحد شهرضا، دانشگاه آزاد اسلامی، اصفهان، ایران
4 - استادیار، واحد شهرضا، دانشگاه آزاد اسلامی، اصفهان، ایران
کلید واژه: روی, منگنز, آسیابکاری, نانوکامپوزیت منیزیم,
چکیده مقاله :
یک روش برای تولید نانوبیوکامپوزیت Mg-3Zn-1Mn روش متالورژی پودر میباشد. پس از تهیه آلیاژ به روش آسیابکاری، استحکام دهی طی فرآیند تفجوشی انجام میگیرد. شرط حصول به استحکام و بالطبع مقاومت خوردگی بالای نمونههای تفجوش داده شده توزیع یکنواخت عناصر روی و منگنز در زمینه منیزیم و کاهش حداکثری اندازه ذرات برای افزایش سطح میباشد. در این تحقیق تحت شرایط معین، فرآیند آسیابکاری برای تولید این نانوکامپوزیت انجام گرفته است. بررسی نتایج XRD برای نمونهها بیانگر زمان بهینه آسیاب کاری ۲۵ ساعت میباشد. در این زمان اندازه دانهها ۲۷ میکرومتر و اندازه کریستالیت ها ۲۴ نانومتر محاسبه گردید. بررسی نتایج XRD،XRF،TEM،HR-TEM،SEM و FE-SEM برای نمونهها بیانگر توزیع یکنواخت ذرات روی و منگنز در زمینه منیزیم و تأییدکننده کاهش اندازه ذرات در حد نانو و شکل کروی برای محصول نانوبیوکامپوزیت میباشد.
One approach for the preparation of Mg-3Zn-1Mn nanobiocomposite is powder metallurgy. After preparing the alloy by the milling process, hardening is conducted during the sintering process. The condition for obtaining high strength and corrosion resistance of as-sintered specimens is the uniform distribution of zinc and manganese elements in the magnesium matrix and the maximum particle size reduction to increase the surface area. In this research, under certain conditions, the milling process has been conducted to fabricate this nanocomposite. The result of XRD analysis exhibited that the optimal sample is obtained after 25 h milling. At this time, the grain size was 27 μm, and the crystallite size was 24 nm. Evaluation of X-ray diffraction (XRD), X-ray fluorescence (XRF), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), and field emission scanning electron microscopy (FE-SEM) results for samples shows uniform distribution of zinc and manganese particles in the matrix of magnesium and confirms the reduction of particle size with spherical shape for nanobiocomposite specimens.
[1] S. Kamran & C. Fleck, "Biodegradable magnesium alloys as temporary orthopaedic implants", Biometals, vol. 32, pp.185–193, 2019.
[2] Y. Chen, J. Dou, H. Yu & C. Chen, "Degradable magnesium-based alloys for biomedical pplications: The role of critical alloying elements" Biomaterials Applications, vol. 33, pp. 1301-1313, 2019.
[3] M. Sankar, J. Vishnu, M. Gupta & G. Manivasagam, "Magnesium-based alloys and nanocomposites for biomedical application", Applications of Nanocomposite Materials in Orthopedics, pp. 83-109, 2019.
[4] A. H. M. Sanchez, B. J. C. Luthringer, F. Feyerabend & R. Willumeit, "Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates?" Acta Biomaterialia, vol. 13, pp. 16-31, 2015.
[5] Ch. Liu, Zh. Ren, Y. Xu, S. Pang, X. Zhao & Y. Zhao, "Biodegradable Magnesium Alloys Developed as Bone Repair Materials" Scanning, Received 28 July 2017, vol. 2018, pp. 1-15, 2018.
[6] M. Murad Ali, A. Hussein & N. Al-Aqeeli, "Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties", Alloys and Compounds, Vol. 792, pp. 1162-1190, 2019.
[7] Y. Ding, C. Wen, P. Hodgson & Y. Li, "Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys", Materials Chemistry B, vol. 2, pp. 1912-1933, 2014.
[8] F. Witte, N. Hort, C. Vogt, S. Cohen, K. Ulrich Kainer, R. Willumeit & F. Feyerabend, "Degradable biomaterials based on magnesium corrosion", Current Opinion in Solid State and Materials Science, vol. 12, pp. 63-72, 2008.
[9] N. Roohani, R. Hurrell, R. Kelishadi & R. Schulin, "Zinc and its importance for human health", Research in Medical Sciences, vol. 18, pp. 144-157, 2013.
[10] U. Riaz, I. Shabib & W. Haider, "The current trends of Mg alloys in biomedical applications", Biomedical Materials Research Part B: Applied Biomaterials, vol. 107, pp. 1970-1996, 2018.
[11] E. Koç, M. B. Kannan, M. Unal & E. Candan, "Influence of zinc on the microstructure, mechanical properties and in vitro corrosion behavior of magnesium-zinc binary alloys", Alloys and Compounds, vol. 648, pp. 291-296, 2015.
[12] J. H. Chu, L. B. Tong, Z. H. Jiang, D. N. Zou, Q. J. Wang, S. F. Liu & H. J. Zhang, "A comparison study of Ce/La and Ca microalloying on the bio-corrosion behaviors of extruded Mg-Zn alloys", Magnesium and Alloys, vol. 8, pp. 1269-1280, 2019.
[13] R. Ramkumar, G. Arunkumar, K. Radhakrishnan & S. V. Kajendra Kumar, "Studies on mechanical, microstructure and corrosion properties on biodegradable Mg-Zn", Alloys Materials Today: Proceedings, 2020.
[14] D. Drozdenko, M. Yamasaki, K. Mathis, P. Dobroň, P. Lukač, Sh. Inoue, Y. Kawamura & N. Kizu, "Optimization of mechanical properties of dilute Mg-Zn-Y alloys prepared by rapid solidification", Materials and Design, vol. 181, pp. 1-12, 2019.
[15] P. Chen, J. Bornhorst & M. Aschner, "Manganese metabolism in humans", Frontiers in Bioscience, vol. 711, pp. 1655-1679, 2018.
[16] X. Gu, Y. Zheng, Y. Cheng, Sh. Zhong & T. Xi, "In vitro corrosion and biocompatibility of binary magnesium alloys", Biomaterials, vol. 30, pp.484-498, 2009.
[17] F. Cao, Zhi. Shi, G-L. Song, M. Liu & A. Atrens, "Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg–X alloys: X = Mn, Sn, Ca, Zn, Al, Zr, Si, Sr", Corrosion Science, vol. 76, pp. 60-97, 2013.
[18] M. Sanjay Dani, V. J. Rao & I. B. Dave, "A Review in Corrosion behaviour of Mn added Magnesium and its alloys", International Advanced Research Journal in Science, Engineering and Technology, vol. 2, pp. 71-77, 2015.
[19] Y. Dong-Song, Z. H. Er-Lin & Z. Song-Yan, "Effect of Zn on mechanical property and corrosion property of extruded Mg-Zn-Mn alloy", Trans. Nonferrous Met. Soc. China, vol. 18, pp.763-768, 2008.
[20] P. Morcos, K. I. ElKhodary & H. G. Salem, "Mechanically Alloyed Magnesium Based Nanostructured Alloy Powders for Biomedical Applications", Magnesium Technology, pp. 35-41, 2017.
[21] X. Luo, Ch. Fang, F. Yao, H. Zhao & Sh. Yan, "Effect of Sintering Parameters on the Microstructure and Mechanical Properties of Medical Mg–3Mn and Mg–3Zn Prepared by Powder Metallurgy", Trans Indian Inst Met, vol. 72, pp. 1791-1798, 2019.
[22] P. Burke, G. J. Kipouros, D. Fancelli & V. Laverdiere, "Sintering fundamentals of magnesium powders", Canadian metallurgical quarterly, vol. 48, pp. 123-132, 2009.
[23] م. ح. شیرانی، ع. سعیدی، م. کثیری و ا. ر. شیرانی، "اثر فعال سازی مکانیکی بر تف جوشی و خواص مکانیکی کامپوزیت Fe-50Ni-TiC "، فرآیندهای نوین در مهندسی مواد، سال 6، شماره 1، صفحه 62-57، 1391.
[24] S. Jabbarzare, H. R. Bakhsheshi-Rad, A. A. Nourbakhsh, T. Ahmadi & F. Berto, " Effect of graphene-oxide on corrosion, mechanical and biological properties of Mg-based nanocomposite", Int. J. Miner. Metall. Mater.https://doi.org/10.1007/s12613-020-2201-2 .
[25] M. A. Taha, R. A. Youness and M.F. Zawrah," Review on nanocomposites fabricated by mechanical alloying", Int. J. Miner. Metall. Mater, vol. 26, no. 9, pp. 1047-1058, 2019.
_||_