تأثیر نیتروژن بر رسوب فازهای ثانویه و خواص مکانیکی سوپر آلیاژ اینکونل 718 جوشکاری شده به روش قوسی تنگستن گاز
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدبهروز نبوی 1 , مسعود گودرزی 2 , عبدالخالق خان 3 , احسان احمدی 4
1 - دانشجوی دکتری، دانشکده متالورژی و مهندسی مواد ، دانشگاه علم و صنعت ایران، تهران، ایران
2 - دانشیار، دانشکده متالورژی و مهندسی مواد ، دانشگاه علم و صنعت ایران، تهران، ایران
3 - سرپرست انجمن مواد منیتوبا، دانشکده مهندسی مکانیک، دانشگاه منیتوبا، وینیپگ، کانادا
4 - دانشکده متالورژی و مهندسی مواد، دانشگاه علم و صنعت ایران، تهران ، ایران
کلید واژه: استحکام کششی, نیتروژن, اینکونل 718, فاز ثانویه,
چکیده مقاله :
در تحقیق حاضر، اثر عنصر بین نشین نیتروژن بر رسوب فازهای ثانویه و استحکام کششی آلیاژ اینکونل 718 جوشکاری شده به روش قوسی تنگستن گاز مورد بررسی قرار گرفت. جوشکاری با متغیر ترکیب گاز محافظ Ar + (0-5)%N2 انجام شد. ریزساختار توسط میکروسکوپ نوری و میکروسکوپ های الکترونی روبشی و عبوری مورد مطالعه قرار گرفت. نتایج آشکار ساخت که با افزایش نیتروژن، کسر حجمی فازهای غنی از نایوبیم شامل لاوه و کاربید به علت تشدید میکرو جدایش Nb در نواحی بین دندریتی افزایش پیدا می کند. این رویداد به نوبه خود بر اندازه فاز γ" درون فاز γ نیز اثر منفی دارد. نتایج حاصل از آزمون کشش نشان داد که نمونه جوشکاری شده با یک درصد نیتروژن در مقایسه با سایر نمونه ها از بیشترین استحکام تسلیم و کشش نهایی برخوردار است. درحالیکه افزایش بیشتر نیتروژن به علت افزایش مقدار فاز لاوه و کاهش اندازه γ" موجب کاهش مقادیر استحکام می گردد.
In this research paper, principal attention is given to the effect of interstitial nitrogen on the precipitation of secondary phases and tensile strength of gas tungsten arc welded (GTAW) Inconel 718. Welding was performed using Ar+(0-5%)N2 shielding gas mixtures. Secondary phases were characterized by optical microscope, field-emission gun scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). The results revealed that with increment of nitrogen content, the volume fraction of Nb-bearing phases like Laves and carbide increased due to increased microsegregation of Nb in interdenderitic region. Moreover, nitrogen was found to have negative role in the size of gamma double prime particles within γ core. According to the tensile test results, Ar+1%N2 weld samples showed the maximum ultimate tensile strength and yield strength compared to other samples. While more nitrogen leads to reduction of both strengths due to increased Laves phase quantity and decreased size of gamma double prime precipitates.
[1] X. Huang, M. C. Chaturvedi & N. L. R. Chards, "Effect of Homogenization Heat Treatment on the Microstructure and Heat-Affected Zone Microfissuring in Welded Cast Alloy 718", vol. 27, 1996.
[2] ع. خرم، ا. داودی جمالویی و ع جعفری، "بررسی اثر همگنسازی بر ریزساختار و خواص مکانیکی اتصال فاز مایع گذرا بین اینکونل 718 و اینکونل 600"، فرآیندهای نوین در مهندسی مواد، دوره 11، شماره 3، صفحه 59-49، 1396.
[3] S. G. K. Manikandan, D. Sivakumar, K. P. Rao & M. Kamaraj, "Laves phase in alloy 718 fusion zone — microscopic and calorimetric studies", Mater. Charact, vol. 100, pp. 192–206, 2015.
[4] A. Niang, J. Huez, J. Lacaze, B. Viguier, Characterizing Precipitation Defects in Nickel Based 718 Alloy, Mater. Sci. Forum. 636–637, 517–522, 2010.
[5] ع. مرتضایی و م. شمعانیان، "اثر عملیات حرارتی پیرسازی بر ریزساختار، خواص مکانیکی و مقاومت به خوردگی سوپر آلیاژ پایه نیکل اینکونل 718"، فرآیندهای نوین در مهندسی مواد، دوره 9، شماره 4، صفحه 231-205، 1394.
[6] J. K. Hong, N. K. Park, S. J. Kim & C. Y. Kang, "Microstructures of Oxidized Primary Carbides on Superalloy Inconel 718", Mater. Sci. Forum, vol. 502, pp. 249–256, 2009.
[7] J. J. Ruan, N. Ueshima & K. Oikawa, "Phase transformations and grain growth behaviors in superalloy 718", J. Alloys Compd, vol. 737, pp. 83–91, 2018.
[8] Y. Zhang, Z. Li, P. Nie & Y. Wu, "Carbide and nitride precipitation during laser cladding of Inconel 718 alloy coatings", Opt. Laser Technol, vol. 52, pp. 30–36, 2013.
[9] Y. Zhang, X. Cao & P. Wanjara, "Tensile properties of laser additive manufactured Inconel 718 using filler wire", J. Mater. Res, vol. 29, pp. 2006–2020, 2014.
[10] J. N. DuPont, J. C. Lippold & S. D. Kiser, "Welding metallurgy and weldability of Nickel-base alloys", 2009.
[11] E. R. Cutler, A. J. Wasson & G. E. Ã. Fuchs, "Effect of minor alloying additions on the solidification of single-crystal Ni-base superalloys", J. Cryst. Growth, vol. 311, pp. 3753–3760, 2009.
[12] L. A. Jackman, M. D. Boldy & A. L. Coffey, "The influence of reduced carbon on Inconel 718", Miner. Met. Mater. Soc, pp. 261–270, 1991.
[13] T. Alam, P. J. Felfer, M. Chaturvedi, L. T. Stephenson, M. R. Kilburn & J. M. Cairney, "Segregation of B , P , and C in the Ni-Based Superalloy, Inconel 718", Metall. Mater. Trans. A, vol. 43, pp. 2183–2191, 2012.
[14] H. Herold, M. Zinke & A. Hübner, "Investigations on the use of nitrogen shielding gas in welding and its influence on the hot crack behaviour of high-temperature resistant fully austenitic Ni- and Fe-base alloys", Weld. World, vol. 49, pp. 50–63, 2005.
[15] B. Nabavi, M. Goodarzi & V. Amani, "Nitrogen effect on the microstructure and mechanical properties of nickel alloys", Weld. J, vol. 94, pp. 53-60, 2015.
[16] E. R. Cutler, A. J. Wasson & G. E. Fuchs, "Effect of minor alloying additions on the carbide morphology in a single crystal Ni-base superalloy", Scr. Mater, vol. 58, pp. 146–149, 2008.
[17] R. Jiang, B. Chen, X. Hao, Y. Ma, S. Li & K. Liu, "Micro-segregation and Precipitation of Alloy 690 during Isothermal Solidification : the Role of Nitrogen Content", J. Mater. Sci. Technol, vol. 28, pp. 446–452, 2012.
[18] X. L. Guo, J. B. Yu, X. F. Li, Y. Hou & Z. M. Ren, "Effect of nitrogen content on the microstructure and mechanical properties of a cast nickel- base superalloy", Ironmak. Steelmak, pp. 1–9, 2016.
[19] "ASTM Standard E8/8M", Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2004.
[20] "ASTM Standard E112", Standard Test Methods for Determining Average Grain Size., ASTM International, West Conshohocken, PA, 2004.
[21] D. D. Nage, V. S. Raja & R. Raman, "Effect of nitrogen addition on the microstructure and mechanical behavior of 317L and 904L austenitic stainless steel welds", J. Mater. Sci, vol. 1, pp. 2097–2112, 2006.
[22] S. Kou, "Welding metallurgy", John Wiley & Sons, 2002.
[23] A. B. Murphy, M. Tanaka, S. Tashiro, S. Sato, & J. J. Lowke, "A computational investigation of the effectiveness of different shielding gas, " J. Phys. D. Appl. Phys, vol. 42, no.115205, pp. 14, 2009.
[24] A. J. Ramirez & J. C. Lippold, "High temperature behavior of Ni-base weld metal Part I. Ductility and microstructural characterization", Mater. Sci. Eng. A, vol. 380, pp. 259–271, 2004.
[25] S. L. Cockcroft, T. Degawa, A. Mitchell, D. W. Tripp & A. Schmalz, "Inclusion Precipitation in Superalloys", Miner. Met. Mater. Soc, pp. 577–586, 1992.
[26] G. D. J. Ram, A. V. Reddy, K. P. Rao, & G. M. Reddy, "Control of Laves phase in Inconel 718 GTA welds with current pulsing", Sci. Technol. Weld. Join, vol. 9, pp. 390-398, 2004.
[27] L. Iorio, M. Cortie & J. Jones, "Technical note: solubility of nitrogen in experimental low nickel austenitic stainless steels", J. South African Institude Min. Metall, pp. 173–177, 1994.
[28] S. Kibey, J. B. Liu, M. J. Curtis, D. D. Johnson & H. Sehitoglu, "Effect of nitrogen on generalized stacking fault energy and stacking fault widths in high nitrogen steels", Acta Mater, vol. 54, pp. 2991–3001, 2006.
[29] N. Saenarjhan, J. Kang & S. Kim, "Effects of carbon and nitrogen on austenite stability and tensile deformation behavior of 15Cr-15Mn-4Ni based austenitic stainless steels", Mater. Sci. Eng. A, 2018.
[30] V.G. Gavriljuk, B.D. Shanina, H. Berns, On the correlation between electron structure and short range atomic order in iron-based alloys, Acta Mater. 48, 3879–3893, 2000.
[31] L. Mosecker & A. Saeed-Akbari, "Nitrogen in chromium-manganese stainless steels: A review on the evaluation of stacking fault energy by computational thermodynamics", Sci. Technol. Adv. Mater, pp. 142013, 2013.
[32] G. D. J. Ram, A. V. Reddy, K. P. Rao & G. M. Reddy, "Control of Laves phase in Inconel 718 GTA welds with current pulsing", Sci. Technol. Weld. Join, vol. 9, pp. 390–398, 2004.
_||_