بررسی خواص الکترومغناطیسی و جذب مایکروویو هگزافریت نوع Z با جانشانی روی
محورهای موضوعی : سنتز موادزینت میرزایی 1 , محمد جزیره پور هرمزی 2 , احمد پوربافرانی 3
1 - دانشجوی کارشناسی ارشد، علوم و فناوری نانو (نانوفیزیک)، دانشگاه صنعتی مالک اشتر، ایران
2 - استادیار، دانشکده الکتروسرام و مهندسی برق، دانشگاه صنعتی مالک اشتر، ایران
3 - پژوهشگر، دانشکده الکتروسرام و مهندسی برق، دانشگاه صنعتی مالک اشتر، ایران
کلید واژه: آسیابکاری, جذب مایکروویو, گذردهی الکتریکی, نفوذپذیری مغناطیسی, هگزافریت نوع Z,
چکیده مقاله :
در این پژوهش اثر جانشانی مقادیر مختلفی از کاتیون روی (Zn) بر خواص الکترومغناطیسی و جذب مایکروویو هگزافریت باریم نوع Z با ترکیب شیمیایی Ba3Co2-xZnxFe24O41 (2،5/1،4/1،3/1،2/1،0=x) تولید شده به روش آسیاب کاری پرانرژی مورد مطالعه قرار گرفت. جهت بررسی و تایید تشکیل فاز هگزافریت باریم نوع Z در شرایط سنتز به کار رفته از روش پراش پرتوایکس (XRD) استفاده شد. خواص مغناطش مجموعه ترکیبات تولید شده توسط مغناطیسسنج گرادیان نیروی متناوب (AGFM) مطالعه گردید و مشاهده شد که با اعمال جانشانی در ترکیب موردنظر مقدار مغناطش بیشینه افزایش مییابد، بهطوریکه از مقدار emu/g 67 برای نمونهی بدون جانشانی به emu/g84 برای ترکیب در بیشترین مقدار خود میرسد. همچنین ضرایب گذردهی الکتریکی و نفوذپذیری مغناطیسی مختلط نمونه ها، توسط تحلیل گر برداری شبکه (VNA) مورد مطالعه قرار گرفت. با استفاده از ضرایب اندازه گیری شده، نمودارهای تلفات انعکاسی ترسیم شد. نتایج حاصل از نمودارهای تلفات انعکاسی (RL) نشان داد که بهطور میانگین بیشترین پهنای باند جذب در بین نمونه ها در محدوده ی فرکانسی GHz 8-4 رخ داده است. بهترین کیفیت جذب (منفی ترین تلفات انعکاسی) به میزان dB 47- و در فرکانس GHz 7 برای نمونه ی با شاخص جانشانی 3/1=x مشاهده گردید.
In this research, the effect of different substitution quantities of zinc cations on electromagnetic and microwave absorption properties of Z-type barium hexaferrite with chemical composition of Ba3Co2-xZnxFe24O41 (x=0, 1.2, 1.3, 1.4, 1.5, 2) generated by high energy milling method was studied. X-ray diffraction (XRD) method was used to verify the formation of Z type Ba-hexaferrite phase in the synthesis conditions. Magnetization properties of different compositions were studied by alternative gradient force magnetometery (AGFM). X-ray diffraction (XRD) method was used to confirm the formation of Z-type Ba-hexaferrite phase. The investigations by AGFM showed that the amount of magnetization increased by substituting the desired composition. So that the amount of magnetization (67 emu/g) for an unsubstituted sample will reach its maximum (84 emu/g) for the sample with composition of . In addition, complex permeability and permittivity coefficients of the samples were studied by vector network analyzer (VNA). Using the measured coefficients, reflection loss curves were plotted. The results of the reflection loss (RL) plots showed that, on average, the maximum absorption bandwidth occurred among the samples at a frequency range of 4-8 GHz. The best absorption (the most negative reflectance loss) was observed at -47 dB and at a frequency of 7 GHz for the sample with an index of substitution of x=1.3.
[1] م. جزیرهپور و م. ح. شمس، "سنتز و مشخصه یابی نانو میلههای Fe2O3/BaFe12O19و بررسی خواص مغناطیسی آنها"، فرآیندهای نوین در مهندسی مواد، دوره 11، شماره 1، ص 139-148، 1396.
[2] م. نصر اصفهانی، "تأثیر ابعاد ذرات بر روی خواص جذبی امواج رادار در کامپوزیتهای نانو ساختار فریت نوع Z/پلیمر"، فرآیندهای نوین در مهندسی مواد، دوره 7، شماره 1، ص 81-86، 1392.
[3] J. Shen, K. Chen, L. Li, Y. Ding, J. Li & W. Kong, “Fabrication of Z-type barium ferrite/silica composites with enhanced microwave absorption”, Science China Technological Sciences, Vol. 57, No. 9, pp. 1858–1864, 2014.
[4] T. Kikuchi, T. Nakamura, T. Yamasaki, M. Nakanishi, T. Fujii, J. Takada & Y. Ikeda, “Magnetic properties and high frequency response of single-phase Z-type strontium cobalt hexaferrite prepared by polymerizable complex method”, Advances in Science and Technology, Vol. 67, pp. 104–107, 2010.
[5] Z. W. Li, Y. P. Wu, G. Q. Lin & L. Chen, “Static and dynamic magnetic properties of CoZn substituted Z-type barium ferrite Ba3CoxZn2-xFe24O41 composites”, Journal of Magnetism and Magnetic Materials, Vol. 310, No. 1, pp. 145–151, 2007.
[6] T. Nakamura and E. Hankui, “Control of high-frequency permeability in polycrystalline (Ba, Co)-Z-type hexagonal ferrite”, Journal of Magnetism and Magnetic Materials, Vol. 257, No. 2, pp. 158–164, 2003.
[7] M. M. Rashad, H. M. El-Sayed, M. Rasly, A. A. Sattar & I. A. Ibrahim, “Magnetic and dielectric properties of polycrystalline La doped barium Z-type hexaferrite for hyper-frequency applications”, Journal of Materials Science: Materials in Electronics, Vol. 24, No. 1, pp. 282–289, 2013.
[8] Z. W. Li and Z. H. Yang, “Effect of Ti substitution on dynamic and static magnetic properties for Ba3Co2Fe24−xTixO41Hexaferrites”, Journal of Magnetism and Magnetic Materials, Vol. 334, pp. 5–10, 2013.
[9] H. Zhang, J. Zhou, Y. Wang, L. Li, Z. Yue & Z. Gui, “The effect of Zn ion substitution on electromagnetic properties of low-temperature fired Z-type hexaferrite”, Ceramics International., Vol. 28, No. 8, pp. 917–923, 2002.
[10] C. Mu, Y. Liu, Y. Song, L. Wang & H. Zhang, “Improvement of high-frequency characteristics of Z-type hexaferrite by dysprosium doping”, Journal of applied physics, Vol. 109, No. 12, p. 123925, 2011.
[11] H. Zhang, J. Zhou, Y. Wang, L. Li, Z. Yue & Z. Gui, “The effect of Zn ion substitution on electromagnetic properties of low-temperature fired Z-type hexaferrite”, Ceramics International, Vol. 28, No. 8, pp. 917–923, 2002.
[12] C. H. Mu, Y. L. Liu, H. W. Zhang, Y. Q. Song, Q. Y. Wen & J. Shen, “Influence of MgTiO3 on the magnetic and dielectric properties of Ba3Co2Fe24O41 hexaferrite”, Journal of Applied Physics, Vol. 107, No. 9, 2010.
[13] C. H. Rhee, K. L. Cho & C. S. Kim, “Heat-treatment effect on Z-type hexaferrite for RF device application”, Journal of the Korean Physical Society, Vol. 66, No. 1, pp. 96–99, 2015.
[14] X. Zhang, Z. Yue, S. Meng, B. Peng & L. Yuan, “Magnetic and electrical properties of Z-type hexaferrites sintered in different atmospheres”, Materials Research Bulletin, Vol. 65, pp. 238–242, 2015.
[15] Z. Zheng, Q. Feng & V. G. Harris, “Low-loss Z-type barium hexaferrite composites from nanoscale ZnAl2O4 addition for high-frequency applications”, AIP Advances, Vol. 8, No. 5, 2018.
[16] Z. W. Li, L. Guoqing, N.-L. Di, Z.-H. Cheng & C. K. Ong, “Mössbauer spectra of CoZn-substituted Z-type barium ferrite Ba3Co2− xZn xFe24O41”, Physical Review B, Vol. 72, No. 10, p. 104420, 2005.
[17] Z. W. Li, L. Guoqing, L. Chen, W. Yuping & C. K. Ong, “Co2+ Ti4+ substituted Z-type barium ferrite with enhanced imaginary permeability and resonance frequency”, Journal of Applied Physics, Vol. 99, No. 6, p. 63905, 2006.
[18] M. Jazirehpour, M. H. Shams & O. Khani, “Modified sol–gel synthesis of nanosized magnesium titanium substituted barium hexaferrite and investigation of the effect of high substitution levels on the magnetic properties”, Journal of Alloys and Compounds, Vol. 545, pp. 32–40, 2012.
[19] P. E. Kazin, L. A. Trusov, D. D. Zaitsev, Y. D. Tretyakov & M. Jansen, Formation of submicron-sized SrFe12-xAlxO19 with very high coercivity, Journal of Magnetism and Magnetic Materials, Vol. 320, No. 6, pp. 1068–1072, 2008.
[20]J. Huo, L. Wang & H. Yu, “Polymeric nanocomposites for electromagnetic wave absorption”, Journal of Materials Science, Vol. 44, No. 15, pp. 3917–3927, 2009.
_||_